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1 Mirror symmetry: persons, values, and objects

Peter Galison

At the millennium, there was much talk about “the end of physics.” Many
physicists believed that their enterprise was coming to a final phase of its
history, but they interpreted “the end” in numerous ways. At the end of the
cold war some made dire predictions about the discipline because military
research and development were downsized, the $15 billion superconduct-
ing supercollider was canceled in 1993, the National Science Foundation
offered less to physics, and the Department of Energy budget was signifi-
cantly reallocated. These same words—“the end of physics”—took on a
second meaning in the 1980s and 1ggos, when some high-energy particle
physicists turned against a small but growing minority of theorists who
embraced string theory. For these critics string theory appeared a false
salvation, a mathematical chimera that abandoned experiment, tempted
the young, distorted pedagogy, and ultimately threatened the existence of
physics as science. A third meaning of the “end of physics” emerged
within string theorists’ own ambitions: many argued that a remarkable
series of discoveries within the mathematical physics of strings provided
grounds, the best ever, for an account of all the known forces including
gravity, completing the historical mission of fandamental physics. It would
be, its most enthusiastic backers argued, a “theory of everything.”

Physics at the millennium

Hopes and fears for finality in physics are not new. Distinctive is the string-
theoretical vision in which mathematics itself came to stand where experi-
ment once was: the view that the powerful constraints of mathematical
self-consistency would hem theory in so tightly that, at the end, only one
theory would stand, and that an elegant, compact theory would cover the
world by predicting all the basic forces and masses that constitute and bind
matter. Theoretical physics would end, in this third sense, because the




ancient search for physical explanation in terms of basic building blocks
had reached its last station. ‘

Rejecting the doomsayers, the new alliance between physics and mathe-
matics saw the opportunity to restructure the bounds of both f‘ields., open-
ing a window on twenty-first century mathematics theft might, 1mm1r.1er}t1y,
produce a unified account of gravity and particle physics. But the F)ptlmlsm
came with warnings from some quarters of both math and phym‘cs——what
would be the proper standards of demonstration in this new interzone
between disciplines? Would this new “speculative mathematics” §acr1.ﬁce
experiment on the physics side and intrude physical argumer}tanon into
the heartland of mathematics on the other? Would it compromise both the
physicists’ demand for laboratory confirmation and the mathematicians’
historical insistence on rigor? .

These discussions over the place of string theory are enormously in-
structive. They offer a glimpse into theoretical physics during a remarkal'ﬂe
period of transition, for in the realignment of theory tov.vard mathematics
the meaning of both theory and theorist were in flux: First, in th.e .19905 anew
category of theorist was coming into being, part mathematman. and part
physicist. Second, theorists ushered a new set of conceptual objects onto
the stage, not exactly physical entities and yet not quite (or not yeF) fully
mathematical objects, either. Finally, alongside the shift in theorist and
theory, there arose, in the trading zone between physics and mathematics,_a
style of demonstration that did not conform either to older form§ of physi-
cal argumentation familiar to particle physicists or to canonical proofs
recognizable to “pure” mathematicians.” '

By introducing new categories of persons, objects, and demonstrations,
string theory made manifest conflicts over the values that propel and re-
strict the conduct of research. These debates, joined explicitly by both
mathematicians and physicists, focused on the values that ought to guide
research, and the disagreements were consequential. At stake Wer.e the
principles according to which students should be trained, how credit for
demonstrations should be partitioned, what research programs ought be
funded, and what would count as a demonstration. For all these reasons,
the status of claims and counterclaims about string theory mattered. They
were not “just rhetoric” constructed after the fact; they were, in Pa.rt,
struggles over the present and future of physics. Values, in the c.on]o.mt
moral and technical sense I have in mind, were not, as one historian
derisively called themn, mere “graffiti.”” Nor is it the case that. these values
respected a distinction between “inside” and “outside” science. These
were not values in the sense of “propriety,” such as whether or not hono_r—
ary authorship would be countenanced on a group paper. Rather, I v.vﬂl
argue that the “values” in debate crosscut through the central, guiding

24 DPeter Galison

commitments of physics and mathematics into the wider, everyday sense of
the term. For this reason, dismissing the role of values in shaping theo-
retical research makes it impossible to understand both the moral passion
behind these debates over demonstrative standards, the participants’ own
understanding of their distinctive scientific cultures, and ultimately, the
scientific persona of the physicist. )
The argument will follow this order: section two tracks the reaction by

particle physicists to the shift by string theorists away from the constant
interplay between theory and experiment. Sections three through five home
in on the creation during the late 198os and early 1g9gos of a striking
“trading zone” between physicists and mathematicians around a variety of
developments including that of “mirror symmetry,” a remarkable develop-
ment at once physical and mathematical. Mirror symmetry offered insight
both into the shape of string theory after the higher dimensions curled up
and provided new ways of understanding not only fundamental features of
algebraic geometry, but also reshaped the status of geometry itself. By
following the ways mathematicians and physicists saw one another in the
episode of mirror symmetry—and the ways each side came to understand
aspects of the other’s theoretical culture—it becomes possible to character-
ize the broad features of 2 new place for theory in the world. Finally, in light
of the tremendous impact of this hybrid physics-mathematics, section six
analyzes the mathematicians’ sometimes conflicted reaction: a response
mixing enormous enthusiasm with grave reservations about the loss of
rigor that accompanied the mathematicians’ collaboration with the physi-
cists. In a sense the physicists’ and mathematicians’ anxieties mirrored one
another: both saw danger in parting from historically established modes of
demonstrations that gave identity to their fields. These discussions were
hard fought and explicit: in the midst of remarkable new results, claims,
and critics, string theorists never had the luxury of being unself-conscious:
the purpose, standards, and foundation of their budding discipline were
always on the table.

At the end of the millennium, string theory resided, both powerfully and
precariously, in the hybrid center between fields, bounded on one side by
the continent of physics under the flag of experiment and on the other side
by the continent of mathematics under the flag of rigor. To understand the
aspirations and anxieties of this turbulent territory is to grasp a great deal
of where theory stood at the end of the twentieth century.

Theory without experiment

In 1989, David Gross, from Princeton, chose physicists’ favorite site for
metaphors (the romantic mountains) on which to erect a new relation
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between theory and experiment, one far different from the close coopera-

tion that had marked the mid-1g70s. “One of the important tasks of theo-

rists is to accompany our experimental friends down the road of discovery;

walk hand in hand with them, trying to figure out new phenomena and

suggesting new things that they might explore.” Burnt into the collective.

memory both of pro- and antistring theorists was the example of the J/psi

and other “charm” discoveries of November 1974.> During the frenetic

days of that late fall, and the months that followed, experimentalists tossed

new particles into the ring, so to speak, and theorists worked furiously to

explain them; theorists postulated new particles, new effects, and new
theories—experimentalists responded with tests that could be prosecuted
almost immediately. At the time Gross was writing, in the late 1980s, that
highly responsive dialogue had fallen into silence—few experimental re-
sults were coming out of the accelerators, and the discoveries that were

being reported had a wickedly short life: the neutrino oscillations (in-

dicating that the neutrino might have a mass) came and went; proton
decays were reported and retracted; monojets spurted momentarily from
CERN, then vanished; the fifth force grabbed attention for a while and
then loosened its hold. Under these circumstances some theorists—Gross
included—were less and less inclined to theorize furiously after each new
sighting. These were no longer the days of new, hot experimental news and
papers written on airplanes returning from the accelerator laborat(?ries, of
quick phenomenological calculations using a couple of Feynman diagrams
and Lie group calculations that could be done on one’s fingers. Looking
back in 1989, Gross put it this way:

It used to be that as we were climbing the mountain of nature the
experimentalists would lead the way. We lazy theorists would lag
behind. Every once in a while they would kick down an experimental
stone which would bounce off our heads. Eventually we would get the
idea and we would follow the path that was broken by the experimen-
talists. Once we joined our friends we would explain to them what the
view was and how they got there. That was the old and easy way (at
least for theorists) to climb the mountain. We all long for the return of
those days. But now we theorists might have to take the lead. Thisisa
much more lonely enterprise.*

Without knowing the location of the summit, or how far it was, the theo-
rists could promise little reassurance to themselves or to the experimental-
ists. In the meantime, experimentalists were not only left behind; they were
left out altogether.

Not surprisingly, many experimentalists were shocked by the theorists’
string ambition, not so much by the idea of theorists leading the way on an
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uncertain trek up an uncharted mountain, but because the experimental-
ists did not see how they could even gain a toehold in the foothills. Carlo
Rubbia, who only a few years before had taken home a Nobel Prize for his
team’s 1983 discovery of the intermediate vector bosons, the W and the Z,
lamented the loss of contact between experiment and theory at a meeting
on supersymmetry and string theory: "

Iam afraid I am one of the few experimentalists here. In fact, I can see
we are really getting fewer and fewer. I feel like an endangered species
in the middle of this theoretical orgy. I am truly amazed. The theories
are inventing particle after particle and now for every particle we have
there is a particle we do not have, and of course we are supposed to
find them. It is like living in a house where half the walls are missing
and the floor only half finished.

After the bruising W and Z search, and a contentious struggle with the top
quark, Rubbia had little appetite for a zoo of unknown particles as nu-
merous as the known. Even one or two particles were terribly hard to find—
Rubbia’s UA1 collaboration had employed some 150 physicists for years at
a cost of hundreds of millions of dollars to find the W and Z. Now this new
breed of theorists was ordering a supersymmetric partner for every known
entity: a selectron as partner to the electron, and so on all the way down
the line.®

Not only was this half-missing world overwhelming in its mandate for
experimental discovery, but the very motivations cited by the theorists had
moved ever further from the accelerator floor. Gosta Ekspong, a senior
European experimentalist who often worked at CERN, addressed the pur-
ported aesthetic satisfactions of the string theorists:

I would like to address the question of truth and beauty; truth being
experiment, beauty being theory. . . . The problem is that the latest
[superstring] theories are so remote from experiment that they cannot
even be tested. Therefore they don’t play the same role as Dirac’s
equation. . . . I hope that this search for beauty does not drive theorists
from experiments, because experiment has to be done at low energies,
from one accelerator to the next and so on. Big jumps do not seem to
be possible.®

In the 1970s and 198o0s, theory and experiment were categories (better: sub-
cultures) with an intermediate trading zone of phenomenologists strad-
dling the fence. Ahmed Ali was one of these, having worked at both DEsY
(Deutsches Elektronensynchrotron) and CERN, and he invoked the idiom of
the fund-seeking experimentalist when he declaimed, “The present super-
string theories are like letters of intent written by a lobby of theoretical
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physicists. They are very good in intent; but often what is sgid in th'e letter
of intent and what is measured in the experiment are two very different
things. The figure of merit of a theory is its predictive power which could
be tested in an experiment in a laboratory.””

In a sense, the discomfiture of experimentalists, and those working
hand in glove with them, could be expected. New techniqugs in theory had
left experimentalists ill at ease with gauge theories in thelr. early stag(.as,
though by 1974 experimentalists had found the gauge theorles. §uggest1ve
of a wide range of predictions, tests, and directions for empirical work.
The case of superstrings seemed much worse; there was no clear avenue
for the accelerator laboratory to follow, and the theories themselves offered
precious little to hold on to in the way of physically “inFuitable_” entities.
Less expected, perhaps, was the yehement reaction aga%nst string theory
from within the theoretical high-energy physics communty.

I now turn to that part of the opposition that was certainly not grounded
on a hostility to wide-ranging claims about unification, nor.on a br(?ad
opposition to the disproportionate resources allocated to particle physics.
(That is, I am not focusing here on criticisms mounted over the 1970s and
1980s by condensed-matter physicists such as Philip W. Anderson, Wbo
had in mind both a defense of emergent properties in many-body physics
and an argument for a reallocation of human and material backing.)® Far
from being outsiders to the tradition of “fundamental” physics,. Howard
Georgi and Sheldon Glashow were as central to the gauge revolution of the
1970s as anyone. No, the dispute hinged on something efzen deeper, I
believe, than the relative fundamentality of physical domains. It circled
around differing visions of what theoretical physics should be.

Before the 1984 annus mirabilis of strings, Georgi opened the 1983 Foqrth
Workshop on Grand Unification with a transparency of a recent advertise-
ment he had spotted:

HELP WANTED
Young Particle theorist to work on Lattice Gauge
Theories, Supergravity, and Kaluza-Klein Theories

Here, Georgi asserted, was a telling sign of the times, a position caught
between “chemistry” (particle physicist nomenclature for a calculational
activity in which fundamental principles were no longer at stake) zfmd
“metaphysics and mathematics” (particle physicist jargon for WO.rk with-
out experiment).® Superstrings had notyet emerged with the force it would
a few years later, but the problem of choosing between truth as beauty and
truth as experiment had, and Georgi sided squarely with those who de-
manded accessible measurements as a sine qua non of desirable theory.
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The next years polarized the situation further. In 1986, Paul Gins-
parg, who had himself contributed to the Alvarez-Gaumé and Witten no-
anomaly demonstration in superstrings, collaborated with his Harvard
colleague Sheldon Glashow to bemoan the loss in superstrings of the
historically productive conflict between experiment and theory:

In lieu of the traditional confrontation between theory and experi-
ment, superstring theorists pursue an inner harmony where elegance,
uniqueness and beauty define truth. The theory depends for its exis-
tence upon magical coincidences, miraculous cancellations and rela-
tions among seemingly unrelated (and possibly undiscovered) fields
of mathematics. Are these properties reasons to accept the reality
of superstrings? Do mathematics and aesthetics supplant and tran-
scend mere experiment? Will the mundane phenomenological prob-
lems that we know as physics simply come out in the wash in some
distant tomorrow? Is further experimental endeavor not only difficult
and expensive but unnecessary and irrelevant?*

This was an altogether different view than that which Glashow had taken
in the euphoric moments after he and Georgi had produced the first grand
unified theories (GUTs), theories that while leaving aside gravity, aimed to
bring together the strong, the weak, and the electromagnetic forces. GUTs,
at least the SU(5) and SO(10) versions, did have very high energies—only a
few orders of magnitude less than the Planck scale. And like the string
theories, GUTSs too forecast a “desert” in which no new experimental re-
sults could be found. But, Glashow and Georgi believed, several crucial
items differentiated GUTs and superstrings. GUTs forecast a crucial (and
measurable) parameter in the electroweak theory that measured the relative
strength of the weak and the electromagnetic forces—siné,,. Further, SU(5)
and SO(10) both predicted a decay of the proton that ought to have been
measurable in deep mine experiments; finally, by construction the new
grand unified theories reproduced all of the known phenomenology of
both the electroweak and quantum chromodynamic theories. Strings could
do neither; that is, they could not make new predictions (such as proton
decay and siné,), nor could they reproduce the known phenomenology of
the standard model. Closing the August 1987 Superworld II conference,
Glashow remarked that the proliferation of superstring theories under-
mined claims for a unique “theory of everything.” Despite such setbacks,
Glashow continued, “stringers enthusiastically pursue their fascination
with ever purer mathematics, while some survivors grope towards the
baroque to the beat of their superdrums. Perhaps we unstrung and unsung
dinosaurs will have the last laugh after all.”*
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By 1989, for Georgi, the proliferation of GUTs, especially their assimila-
tion into the even larger unification schemes of the superstring, was a
source of a mighty ambivalence: “I feel about the present state of guTsas]
imagine that Richard Nixon’s parents might have felt had they been around
during the final days of the Nixon administration. I am very proud that Fhe
grand unification idea has become so important [but] I cannot help bel.ng
very disturbed by the things which GUTs are doing now.” GUTs, he in-
sisted, had been motivated by the desire to complete the unification of
forces by accounting for the weak mixing angle and explaining the quanti-
zation of charge.

They [GUTs] were certainly not an attempt to emulate EinsFein a.nd
produce an elegant geometrical unification of all interacuor}s in-
cluding gravity, despite the parallels which have been drawn in the
semipopular press. Einstein’s attempts at unification were rearguard
actions which ignored the real physics of quantum mechanical inter-
actions between particles in the name of philosophical and mathe-
matical elegance.”

Imitating the aging Einstein in his failed quest for a completely unified
theory, Georgi contended, was a losing proposition. .

As far as Georgi was concerned, at stake was not an incidental question
of style or philosophy, but rather the defining quality of the discipline. The
nature of physics itself was in contest. “Theorists,” Georgl insisted, “are,
after all, parasites. Without our experimental friends to do the real Worl.<,
we might as well be mathematicians or philosophers. When the science is
healthy, theoretical and experimental particle physics track along togetheF,
each reinforcing the other. These are the exciting times.”** When experi-
mentalists get ahead, as the bubble chamber experimentalists did in the
1960s, the discipline becomes eclectic, overrun with results vvithf)ut order
or explanation. At other times theory gets ahead and the path is strewn
with irrelevant speculations out of touch with reality.

The string theorists read history differently; they foresaw a different
future, and they found in the new theory not a violation of the defin-
ing values of physics, but rather their instantiation. Far from being a de-
cline from “the exciting times” of the past, so they argued, these were the
golden days of physics, days like none the discipline had seen since the
founding years of quantum mechanics in the mid-1920s. If such struggles
over values seemed to go beyond typical debates within physics, it was
because more than the choice of the right Lagrangian was in play. In
contemplating the fate of string theory, theorists, experimentalists, and
mathematicians saw that the constitutive practices of their scientific cul-
tures were at stake.
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‘What theorists want

Why, one might well ask, would any theorist want anything beyond the
standard, gauge theory model of the electroweak and strong nuclear
forces? For, try as they might, the powerful accelerator laboratories at
CERN, DESY, and srac had only found ever-greater confirming evidence
for the gauge theories—ever-more precise measurements that in every way
seemed to celebrate the powerful work accomplished from 1967 through
1974. Contra Kuhn there was no experimental anomaly gnawing at the
theorists—no aberrant motion of the perihelion troubled them, no unex-
pected spectral-line splitting, no failure to find a phenomenon like aether
drift. The issues in play were fundamentally intratheoretical. How, theorists
asked, could a theory be considered complete when it held (not including
the neutrino masses) some nineteen free parameters that were utterly un-
fixed by basic principles and could only be inserted by hand? How could a
theory whose nineteen parameters had to be tuned to a precision of ten or
more decimal points be right? Surely this required “fix” hinted at some-
thing more natural, more fundamental that lay beneath the surface. How
could gravity and the particle theories be reckoned in utterly different ways
in disconnected theories? After all, in the highly curved spacetime near a
black hole, quantum effects must enter into the picture. It was not just
unaesthetic to banish gravity from the theory of matter; it was manifestly
inconsistent—and straightforward attempts to make a quantum field the-
ory for gravity led to an inconsistent, nonrenormalizable theory. It seemed
as if the infinities that plagued the quantum field theories signaled a pa-
thology in the theory, suggesting that something was wrong with reason-
ing that allowed lengths to exist down to their vanishing point.

String theory seemed to bridge these gaps. It would start from a single
scale—the Planck scale formed of the various fundamental constants of
quantum mechanics (h), gravity (G), and relativity (c). This quantity, (hG/
¢?) = 10~ * centimeters, set the fundamental length, the “Planck length” of
the theory. Out of this single parameter, so the hope was, would follow all
the parameters of the standard model—including the masses of the quarks
and leptons, the coupling constants of the forces. No host of seemingly
arbitrary values, no fine tuning of their ratios to get sensible answers that
could be reconciled with experiment. Instead of building physics out of
point particles, there would be, at the root of all things, finite strings of
Planck length: all currently known “fundamental” particles of string the-
ory would be no more than the low-lying excitations of these strings.
Instead of a Keplerian music of the spheres, forces and masses would be
the music of these tiny strings, vibrating under an intrinsic tension of
some 10°° tons.

P
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Born in the context of strong interaction theory—a long way from unified
theories of everything—string theorists got far enough to show that the
theories would only exist in 10 or 26 dimensions, far enough, that is, to
seem irrelevant for real world 4-dimensional physics. Then, in 1984 three
things happened: Michael Green and John Schwarz showed that the theory
was probably finite to all orders of perturbation theory—finite, not re-
normalizable.* Second, the Princeton “string quartet” of David Gross,
Jeffrey Harvey, Emil Martinec, and Ryan Rohm exhibited a particular model
that actually seemed a candidate for unifying gravity and known particle
physics. And third, Philip Candelas, Gary Horowitz, Andrew Strominger,
and Edward Witten provided a picture of what string theory might look
like once the “extra” dimensions had curled up (compactified), giving
a glimpse of how “low-energy” (accelerator-accessible) particle physics
might fit into the theory. String theory exploded. From less than a hundred
titles a year between 1974 and 1983, the number skyrocketed to over twelve
bundred in 1987.%

With Planck-scale physics looking promising in 1985, string-friendly
physicists hoped that, with the advances of the high-energy theory, there
might be a way to pick out the low-energy consequences of the theory and
so meet experiment. The basic strategy for this procedure was this. It was
argued that the Planck-scale string theory would “compactify”; that is, 6 of
its ro dimensions would curl up—they had better do so since the world we
live in has but 4 dimensions of space and time. After this compactification,
the “effective theory” defined on this new space—4 space-time dimensions
plus the compactified 6-dimensional real space (equivalent to 3 complex
dimensions)—could then be analyzed to determine what particles were
predicted to exist and how they should interact.

There are stringent requirements on the nature of this complex 3-dimen-
sional manifold. (An n-dimensional space is a manifold ifit can be covered
by patches of Euclidean space R" or, if complex, patches of C".) Most
importantly it still had to have a minimal supersymmetry, the pairing of
particles like the electrons that obey the Pauli exclusion principle with ones
that do not (in the case of an electron, its supersymmetric twin was a
postulated entity known as the selectron). Conversely particles (bosons)
that tend to bunch together like photons are postulated to have twins that
do obey the exclusion principle (the photon’s hypothetical twin that would
obey the exclusion principle was dubbed the photino). The demand for
supersymmetry restricted the structure of the 6 “curled-up” dimensions to
a particular kind of complex manifold. Not too many years earlier, Eugenio
Calabi, a mathematician at the University of Pennsylvania, and Shing-Tung
Yau, a mathematician at Harvard, had explored these manifolds and their
various properties: in a certain sense flat, closed, and configured so that a
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vector transported around a closed loop exhibited very special characteris-
tics. Supersymmetry made these mathematicians’ speculations the perfect
home for curled-up dimensions in string theory. The physicists named
them, eponymously, Calabi-Yau manifolds.*®

At first, everything the physicists knew about these objects came directly
from Yau: he had provided a single example in his original paper and in
later conversations told Andrew Strominger there were at least four more.
For a brief moment, the physicists hoped that all but one would be ruled
out, and that the single remaining space would give the true theory. But
even before examples had multiplied greatly, Yau began to suspect there
were tens of thousands.” Still, the requirements the physicists placed on
such spaces were stringent and the number of candidates was sure to
decrease when those constraints were imposed. In particular, and to the
great surprise of many of the string theorists, it turned out that the number
of particle generations was tied to a topological feature of the Calabi-Yau
space. For a 2-dimensional closed surface, the topological Euler charac-
teristic is defined as 2 (1-g) where g is the number of handles in that
surface. In higher dimensions, the Euler characteristic is a means of identi-
fying the topological complexity of the manifold. Old-style gauge physics
provided no reason for the existence of this multigenerational repetition of
particles: electron and electron neutrino, for example, were repeated as
the muon (just a heavier version of the electron) and its own associated
(muon) neutrino. This same structure repeated a third time with yet a
heavier version of the electron known as the tau and its associated (tau)
neutrino. Here was a clear example of a way in which the mathematics of
algebraic topology fixed a physical feature (number of generations) that
had absolutely no constraint in gauge theory other than brute, experimen-
tal measurement.*® The hope, then, was that one day a unique string theory
in 10 dimensions would be found such that, when compactified, it would
issue in a Calabi-Yau space predicting the number of generations to be three.
It might then, after all these years, be possible to answer I. I. Rabi’s long-
standing question about the muon, “Who ordered that?,” with an answer:
whoever chose the number of holes in the manifold. Or one better: “she
who ordered the original ro-dimensional theory that compacted into a
Calabi-Yau with Euler number plus or minus 6 was, by doing so, ordering
the muon.” But for now, absent that final theory, theorists could restrict
their attention to those Calabi-Yau spaces with the right Euler number—
that is, with the right number of generations.

| X | (the Euler characteristic) = 2 x (number of generations)

So to match the known world of three generations, string theorists
began hunting for 3-dimensional Calabi-Yau manifolds with Euler charac-
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teristic plus or minus 6. (Six divided by two gave the three generations, and
it was generally thought that the sign of the characteristic could be conven-
tionally fixed later.) With a more or less well-articulated problem, physi-
cists began calling in the mathematicians. David Morrison, a Harvard-
trained mathematician at Duke, found the encounter unnerving:

Physicists began asking, “Can you algebraic geometers find us a
Calabi-Yau with Euler characteristic plus or minus 6? It was a pretty
interesting experience being asked this. . .. We were asking questions
for internal mathematical reasons. Suddenly some physicist knocks
on your door and says: if you can answer this it might be a solution to
the problem of the universe. But the communication barriers were
immense. A parody of the interaction was this. A physicist asks a
mathematician: “Can you find me an X?” The mathematician (after
many months): “Here’s an X.” Then the physicist says, “Oh that.
Actually we wanted Y not X.” Ad infinitum.™

Israeli physicist Doron Gepner was at Princeton from 1987 to 1939,
where he was struggling to understand the structure of 2-dimensional
quantum field theories—field theories defined by one time and one space
dimension. These are well-studied objects, simpler in many ways than full-
blown 4-dimensional theories. But for string theorists the 2-dimensional
theory also had the virtue of representing the world-sheet swept out by a
string. As Gepner examined these »>-dimensional theories, he began to ask
an intriguing question. Suppose, as a number of string theorists did at
the time, that one divided the ro-dimensional string space-time into a
4-dimensional part and the compacted 6-dimensional part. It is possible
to think of the 6-dimensional part as parameterized by six fields, one
for each dimension. For a 2-dimensional field theory to represent this
6-dimensional space, it would have to satisfy two constraints. First, it
would need to register the six fields with what is called a “central charge”
proportional to 6. And second, the 2-dimensional theory would have to be

free (or almost free) of anomalies—a quantum effect that spoils the good

behavior of the theory. Gepner considered such a minimal model. It was a
2-dimensional, conformal field theory with a weak anomaly and the right
central charge.

What Gepner suggested, in particular, was that there was a geometrical
interpretation of the particular minimal model he had written down that
had an actual, explicit manifold associated with it. In other words, like
any quantum field theory, the minimal conformal field theory specified all
the configurations the objects it described could take. And the space of
those configurations was, for Gepner’s minimal conformal field theory, a
completely specifiable Calabi-Yau manifold. More precisely, the Calabi-Yau

34 DPeter Galison

manifolds that Gepner had in mind were spaces defined by solutions to a
polynomial in five complex variables, z * +z,° +z° + 2, + 2> = o, known as
Fermat hypersurfaces. Just as a quadratic equation x> +y*> = g (with xand y
real) defines a one-dimensional curve in 2 dimensions, the Fermat defining
equation with z, through z_ picks out a (complex) 4-dimensional hyper-
surface in 5-dimensional complex space (C%). Gepner’s argument identify-
ing the minimal model and the Fermat hypersurface proceeded in two
steps. First, he showed that both had certain quantities in common (the
Hodge numbers, which I'll describe in a moment). And second, he pointed
out that the Fermat hypersurface and the minimal model exhibited the
same discrete symmetries. If, for example, one multiplies, z, (or z, or z_ or
z,orz )bya fifth root of 1, call the root a, then since (az,)° = z,° nothing
would change in the equation specifying the manifold. Third, he showed
that, for certain points in the algebraic formulation of the field theory and
certain points in the Calabi-Yau manifold, the spectrum of particles would
be the same.

Finally, Gepner went out on a limb, conjecturing that the link between
his particular minimal 2-dimensional conformal theory and a Calabi-Yau
space was no accident. He simply declared that every minimal model would
have a corresponding Calabi-Yau space. No proof, just a strongly held
hunch.

An aside: it turns out, quite generally, that there was an enormous sim-
plification in mathematical analysis that could be had by moving from a
complex space of n + 1 dimensions (C*) to a “complex projective space”
of one fewer dimensions (CP®) that consists of all the lines through the
origin in C™1.% So instead of looking at the Fermat hypersurface in com-
plex 5-space (C%), Gepner turned to the equivalent problem in the projec-
tive space, CIP*. Tt was clear to both physicists and mathematicians that,
while CP* by itself is not a Calabi-Yau space, degree 5 hypersurfaces em-
bedded in it would be. Starting with this embedded degree 5 complex
space, the Fermat-type polynomial took the problem down one dimension
and Gepner could lop off another dimension by posing the analysis in
projective 4-space. Together this left a space of 3 complex dimensions—
and it was this space that Gepner conjectured was the explicitly given
Calabi-Yau manifold in which the compactified 2-dimensional string the-
ory lived. So in the end Gepner had a few promising examples but a larger
hope. That hope was for a particular construction of a conformal field
theory that would be both physically realistic and uniquely attached to a
geometry; in short, there would be a correspondence:*

Conformal Field Theory < Calabi-Yau.
Geometry might parallel algebra.
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Mirrors and the meaning of 317, 206, 375

Gepner’s 1987 claim about geometry and minimal conformal field theories
was heard, used, and challenged. Cumrun Vafa, at the time Harvard’s lone
string theorist, was also after the links between algebra and geometry. He
and colleagues Wolfgang Lerche and Nicholas Warner began with the
algebraic relations of the 2-dimensional quantum field theory (just as
Gepner had) and they too asked, What must the geometry be that would
produce these algebraic relations? But what they saw surprised them: there
was an ambiguity on the geometry side—that is, there appeared to be two
radically different geometries either of which seemed as if it could be associated
with essentially the same conformal field theory. (Conformal field theories
are the quantum field theories used to represent the strings; they are,
by definition, left invariant under transformations that preserve the flat
[Minkowskian] metric up to a position-dependent rescaling.) This went
considerably farther than what Gepner had in mind, and in conversation
Gepner criticized Vafa for treating size- and shape-changing parameters as
if they were linked. Lance Dixon too began to wonder about this geometri-
cal ambiguity.”

We shift scenes now, from Cambridge to Texas. Philip Candelas, based
in the physics department at the University of Texas, Austin, had entered
the field through astrophysics (having completed his doctoral dissertation
on Hawking radiation in 1977), had then begun studying quantum gravity
theories, and had turned to string theory in the mid-1980s. By spring
1988, Candelas and his students Rolf Schimmrigk and Monika Lynker were
struggling to understand what it was that Gepner had, in fact, done—what
exactly was he saying about the relation between conformal field theory
and geometry? After giving a seminar to the physics group in Austin during
the spring of 1988, Dixon crowded into Candelas’s office along with the
students to discuss the meaning of Gepner’s analysis. Dixon showed the
Austin group how in Gepner’s scheme labeling a set of particles a genera-
tion or an antigeneration was arbitrary. But on the geometrical side, he
pointed out, there was a huge distinction between the geometries that
would supposedly correspond to the two alternatives. In particular it was
puzzling that finding one geometry (with negative Euler numbers) was
easy but finding the geometry corresponding to the antigeneration, a sup-
posedly equivalent field theory, was impossible. (The Austin group had
practically no relevant manifolds with positive Euler numbers.)* Later on,
Candelas recalled, “I remember being in seminars where Gepner would
say that these Calabi-Yaus came in pairs with opposite Euler numbers. 1
remember saying: ‘Gepner is crazy.’ 7> Crazy because the pairing Gepner
conjectured demanded the so-far unseen manifolds with positive Euler
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numbers. Here it is worth being more precise about the characterization of
a manifold.

Since the nineteenth century, mathematicians have had many ways of
understanding the topological properties of a manifold—properties such
as the genus, the number of holes—that were independent of the particular
metric (a rule for calculating distances) imposed on the space. One of the
most basic topological characteristics is captured by the Betti number, that
is, the number of independent cycles of various dimensions that could be
defined on the space. Intuitively (by-passing the precise definition of cycle)
think of a torus. It has two closed curves that can be neither smoothly
contracted to a point nor deformed to one another: the cycle that goes the
long way around a donut and the cycle that goes around the circular cross-
section. Since the Betti number is a topological characteristic, so are any
linear combinations of Betti numbers, and, in particular, the Euler charac-
teristic can be defined as the alternating sum of Betti numbers. For a real
3-dimensional manifold, for example,

X =b,~b, +b,~b_.

Generalizing to the case of complex manifolds, mathematicians defined
the generalized Betti number (known as the Hodge number, h*9) to be a
count of the number, p, of complex cycles and the number, q, of complex
conjugate cycles. For the class of manifolds considered here (Kihler), the
relation between the Hodge numbers and the Betti numbers is just one of
addition: b,, for example, is just a sum of all the Hodge numbers such that
the total number of cycles is 2, that is, where p + q = 2. So here b, = h** +
hZ,O + hO,Z'

In general, one could say a great deal about a 3-dimensional complex
manifold by writing down all its Hodge numbers, a task conveniently
displayed in the Hodge Diamond:

ho°
ho hot
h2° Rt ho2
ha,o h2,1 h1,2 h0,3
h3t h22 h%3
h2,3 h3,2
h33

Simple complex conjugation takes a complex variable into its conjugate
(as in x + iy goes to x — iy). Accordingly there is a symmetry around the
vertical axis: h*° must equal h®*, for example. Other symmetries enforce an
identity of terms flipped over the horizontal axis, for example, h*® = h*1,
The conditions that define a Calabi-Yau manifold set certain Hodge num-
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bers equal to o and others to 1. When the dust settled, there were gnly two
surviving, independent terms (h** and h** = h*) in the Hodge Diamond
of a Calabi-Yau manifold:

I

0 0
o h? o)
1 h2,1 hZ 1 1
o) ht o]
o o

Roughly speaking, the Hodge number h** counts the number of non-
trivial 2-surfaces on the Calabi-Yau manifold (that is, the number of
»-dimensional surfaces); h** also counts the number of parameters that
rescale the manifold without changing its shape. By contrast, h** leads
easily to the number of 3-surfaces (the number of 3-surfaces is 2 h** + 2);
h>" also gives the number of parameters that change the shape (complex
structure of the manifold) without altering its topology. Summing up the
Hodge numbers in an appropriate way gave the Euler number and, as
discussed above, the Euler number is directly proportional to the number
of generations. For the 3-dimensional Calabi-Yaus

| X|=2 | b+ —h>Y | = 2 (number of generations).

So by late spring 1988, Candelas and his group understood erner’s
conjecture as posing a well-defined puzzle: if a family of particles was
defined on a Calabi-Yau of Euler number X, then the antifamily would be
defined by a manifold of Euler number —X. If this was right, Qalabi:Yau
manifolds that corresponded to conformal field theories came in pairs—
one with X and one with —X—both of which essentially corresponded to
the same (conformal) string theory.

“You see,” Candelas mused, “the mathematicians were never after thou-
sands of examples of something like Calabi-Yau manifolds—they knew half
a dozen. You don’t get promoted in math for such things.”? By contrastf the
physicists were after thousands of these manifolds; they were precisely
interested in the grubby details of their internal geometric structure—for
in one of those thousands of manifolds, in some set of geometrical rela-
tions (so they hoped), was more than a mathematical example. Somewhere
among these imagined structures was the one manifold that would yield .an
effective theory corresponding on one side to a compactification of a still-
to-be found Planck-scale string theory, and on the other side to the zoo

of observed particles that came flying out of particle colliders. Somewhere
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in the panoply of manifolds might lie the one solution to the theory of
everything.

Brian Greene was one of the physicists knocking on mathematicians’
doors. Greene had been an undergraduate at Harvard, then pursued a
doctorate at Oxford with Roger Penrose, finishing in 1986. With a National
Science Foundation (3sF) postdoc in hand, he then returned to Harvard to
work with Vafa in the hopes of doing something “more physical” than the
cosmological work he had followed in England. Greene sought to exhibit,
explicitly, the manifold pairings that Gepner, Dixon, and Vafa thought
existed. By sewing together pieces of manifolds in a suitable way, Greene
and a graduate student, M. Ronen Plesser, found explicitly the missing
manifold of opposite Euler number to the ones that Gepner had explored.

Remarkably, one member of the pair h** corresponded to the h** of the
other (and vice versa)—a mirror flip, if you will, across a diagonal axis on
the Hodge Diamond. And since this flip interchanged those two quantities,
X = 2 (h** —h*") switched sign. For the well known Calabi-Yau with X =
—200, Greene and Plesser now could offer one with X = +200; for the one
with X = —88, there now was a twin with X = +88.2® And this sewing and
gluing process would, by construction, leave the basic physics (the confor-
mal field theory) unchanged in all its predictions despite the fact that
seemingly very different properties of the twin manifolds had switched
roles. In short,

Calabi-Yau _Conformal Field Theory <> Mirror Calabi-Yau

This was a remarkable state of affairs: two different manifolds—dif-
ferent in their very topology—were indistinguishable in terms of physical
predictions. While h** counted the ways in which size could be altered
(rescalings of the metric), h** did something completely different—it al-
tered the shape of the manifold by changing its complex structure. Nothing
in general relativity prepared the physicists for this twinning: in general
relativity, to have a radically different geometry meant a different physical
situation.

Meanwhile, unknown to Greene and Plesser, Philip Candelas was ex-
ploring the same territory, but using very different lines of reasoning.
Candelas developed a way of constructing large classes of Calabi-Yaus and
finding their Hodge numbers, and from that, extracting their Euler num-
bers. Up to that point most of the known Calabi-Yau manifolds had nega-
tive Euler numbers, so it seemed highly unlikely that they actually existed in
pairs. But in the spring of 1989, to check the conjecture Candelas, along
with Lynker and Schimmrigk, did what physicists do when encountering a
question of large numbers of entities. They tried lots of examples. More
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specifically, they generated some six thousand examples of these newly
discovered Calabi-Yaus on the computer and printed out a scatter plot. “We
did not believe they came in pairs,” Candelas noted. “We wanted to know if
we could find Calabi-Yaus with positive Euler numbers. Could there be a
large number of Calabi-Yaus with positive X? Could the computer do the
job in less than the age of the universe?” As it turned out, yes and yes.

When Candelas and his collaborators saw the Euler number printout of
their various Calabi-Yaus, they were floored. Roughly speaking, the num-
ber of positive and negative Xs were equal. Moreover, there were some
twenty-five hypersurfaces with Euler number 6 (or —6) meaning there
would be, as needed, three generations. Candelas: “When I got this graph,
I brought it to Brian Greene and said, ‘You're going to fall off your chair
when you see this.” He said ‘we know that—we know they [Calabi-Yau
manifolds] come in pairs.’ %

Greene, as it turned out, remained upright in his chair because he, too,
had been grappling with Gepner’s wild idea. Having taken a smaller class
of surfaces than Candelas and Xenia de la Ossa had considered (Greene
and Plesser were using the equation z,° + z,° + z,° + z,° + z.> = o, with no
cross terms between the different z’s), the two Harvard postdocs had be-
gun building up conformal field theories on these Calabi Yau manifolds
and discovered, to their immense surprise, that they indeed could get pairs
with opposite Euler numbers. So when Candelas came to his pairing con-
clusion on the wider set, Greene was ready to believe. Now there were two
pieces of evidence for what Greene had begun calling “mirror symmetry.”
From Candelas came a rough argument (same number of positive and
negative Euler numbers for a wide class of manifolds) and from Greene a
precise argument restricted to a narrower class of manifolds: Greene and
Plesser could show exactly that one and the same conformal string theory
could sit on Calabi-Yau manifolds with opposite Euler numbers.

With this concordance in hand, Candelas and Greene began showing
their results to both physicists and mathematicians. Not surprisingly,
Vafa liked the result—it confirmed his earlier conjecture. But when Greene
walked his result the fifty yards or so from the physics department to
Shing-Tung Yau in the Harvard mathematics department, the reception
was quite different. As far as Yau was concerned there simply was no
reason for this pairing; he was sure they had simply made a mistake.
Candelas too found the mathematicians highly dubious. Yau just did not
think that his manifolds were twinned. “I was beginning to believe that
they came in pairs,” Candelas said. “But the mathematicians were not
having any of it. We published the diagram and I began phoning up the
mathematicians—we got no response. There just wasn’t any reason why
they should come in pairs. The first time I mentioned it to Yau, he said it
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must be bullshit.”?® To other mathematicians the arguments by Greene,
Candelas, and their collaborators seemed dreamlike, incomprehensible.
For the mathematicians around 1990, the two Calabi-Yaus seemed utterly
unrelated. First, the conformal field theory itself meant nothing to them—
the fact that the same theory could be defined equivalently on the two
manifolds simply did not move them one way or the other. Second, almost
all the Calabi-Yaus known had negative Euler numbers, so the idea of each
Calabi-Yau having a twin of opposite Euler number seemed preposterous.
Third, the manifolds themselves seemed unrelated. The moduli space (the
space defined by the parameters that define the vacua of the theory) on one
side involved deformation of the complex structure of the Calabi-Yau and
had a special geometry (variation in shape). On the other side, the moduli
space was parameterized by deformations in the Kahler structure (variation
in size).

For the physicists around 1990, the mirror symmetry conjecture seemed
puzzling for completely different reasons. In the moduli space defined by
the parameters that varied complex structure, describing quantum correc-
tions to scattering of strings was particularly easy—it could be shown that
these were not quantum corrected. The geometry was exact. On the other
side (the moduli space built on the size-changing, “Kihler” deforma-
tions), the scattering amplitude was corrected. Because of the quantum
corrections, the geometrical picture, it seemed, would be lost. So how, the
physicists asked, could these two different realizations of the theory possi-
bly be physically equivalent?

To understand why the result was, nonetheless (physics notwithstand-
ing), so entrancing to mathematicians, we need to turn away from the
physics of strings, away from conformal field theories and scattering am-
plitudes, and toward the mathematicians’ own world of algebraic and
enumerative geometry.

When mathematicians approach systems of algebraic equations in sev-
eral variables, they are after the structure of the solutions. One way to get
that is to consider the space of solutions to the equations as a topological
manifold, a manifold in which one does not assume the existence of a
distance but only the topological properties such as the number of holes in
a surface. Algebraic geometers, by contrast, consider the equations as
having coefficients in (an arbitrary field) and the solutions to these equa-
tions lie (in its algebraic closure). As one textbook put it, “the arguments
used are geometric, and are supplemented by as much algebra as the taste
of the geometer will allow.”*

There are high-brow problems in algebraic geometry—problems of clas-
sification of manifolds, for example. But it was not the high flyers that
made first contact with the physicists but rather the mathematicians who
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aimed at high-level classifications by studying specific examples. Herbert
Clemens loved examples. Having taken his doctorate in complex geometry
with Philip Griffiths in 1966, Clemens was after variations of the complex
structure of 3 (complex) dimensional manifolds. For odd dimensions a
simplification exists because the local spatial structure {cohomology) has a
simple extra symmetry. And for 3-folds there is a further reduction in
difficulty if the Hodge numbers at the far left and far right of the Hodge
Diamond are zero. That is, if the Hodge numbers h*® = h®* = o, then,
roughly speaking, the 3-dimensional manifold is called “of Fano type” and
behaves in certain respects as if it were a one-dimensional object. A par-
ticularly simple Fano-type 3-fold is the cubic hypersurface in projective
4-space. And it is there that Clemens did his work. An old conjecture
stipulated that this hypersurface was equivalent to an affine space (a space
without a metric but where distance could be defined along parallel lines).
Clemens and Griffiths proved it was not.

Over the years, Clemens continued studying these Fano spaces, explor-
ing the structures of these simplified 3-dimensional entities and how they
related to the one-dimensional case. “I much preferred working with con-
crete examples,” he said, “and then, after many years, trying to see genet-
ality.” The holy grail of people in the field was to prove Hodge’s conjecture
that, for Fano-type 3-folds, translates to the assertion that the homology—
the set of nonequivalent cycles that specify the topology of the manifold—
would be parameterized by closed loops of algebraic curves. “There are
many out there who would sacrifice an arm and a leg and probably more if
they could prove the Hodge Conjecture, even in a restricted setting close to
the Fano 3-fold case.”*

One way for Clemens to pursue this purely mathematical goal was to
examine the simplest case where one could not move the curves around.
And the Calabi-Yaus defined by a quintic hypersurface in projective 4-space
seemed to fit that bill: it was the lowest degree hypersurface that was not
nearly Fano and it certainly had a nontrivial homology. If Hodge was right,
then the rational curves (the special category of curves that might parame-
terize the general curves) would have to be rigid for a general quintic—that
is, not distendable into one another.

So for the physicists, Calabi-Yau 3-manifolds were the conceptual site on
which they expected to describe a realistic, three-generation string theory
at low energies. But for the mathematicians, Calabi-Yau manifolds were to
be a site for exploring the Hodge Conjecture in the particular case of Fano-
like 3-folds. Now, if the rational curves really were rigid—and Clemens had
shown that some were rigid in arbitrarily high degree—then a homoge-
neous coordinate z, could be restricted to a function of arbitrarily high
degree on a rigid curve. So one ought to be able to count curves of fixed
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degree.®* While there would still be much else to understand, a deter-
mination of their number would say at least something about these curves.
So Clemens encouraged Oklahoma mathematician Sheldon Katz to take
alook.

Counting geometrical objects like this—known as enumerative geome-
try—was a modest corner of algebraic geometry. Katz vividly remembered
advice he got soon after graduate school at Princeton: building a reputation
as an enumerdative geometer might kill his budding career.3* Although
mathematicians had long admired the tantalizing numbers of enumerative
geometry, these numbers were by no means the most highly prized, most
abstract results of algebraic geometry. One old result, due to the magician-
like Hermann Schubert in the nineteenth century, showed that exactly 27
lines could be drawn on a general cubic surface.*® Next on the totem pole of
such counting problems was the task of finding the number of rational
curves of higher degree that could be put on a quintic 3-fold. The simplest
case, lines (curves of degree one), had been calculated in 1979; it turns out,
as Joe Harris showed, that there are 2,875 of them. The next case, that
of conics (curves of degree two), fell to Sheldon Katz in 1986, who had
met Clemens’s challenge: there were 609,250 of them.** What Katz really
wanted to know was what lay behind these numbers: “I wanted to know
what makes Schubert’s ideas work. What deep unexpected relationships
were there on higher-dimensional manifolds?”** By the end of the 198os, it
was well known among enumerative geometers that the next case, the tally
of curves of degree three, was going to be vastly harder to compute. Two
Norwegian mathematicians were hard at work on it; I will return to them in
a moment.

Suddenly, in late 1990, Candelas and his collaborators Xenia de la Ossa,
Paul Green, and Linda Parkes (COGP) saw a way to use mirror symmetry to
barge into the geometers’ garden.*® From Brian Greene and Ronen Plesser,
Candelas knew there was, in principle, an equation that allowed one to
pass from calculations of string interactions on a manifold to the same
calculation on the mirror. Greene and Plesser thought actually computing
some key quantities would simply be too hard—Candelas, who liked cal-
culating things, thought maybe it was in fact tractable using some algebra
and a home computer. Candelas and his younger colleagues reasoned this
way. Suppose three strings interact. Since the conformal theories are es-
sentially the same whether described in terms of a Calabi-Yau manifold, M,
or its mirror, W, the amplitude for the string collision must be the same

whether computed on M or W. On one manifold this expression turned out
to be relatively easy to evaluate. On the mirror manifold, the expression for
the amplitude amounted to the number of rational curves. So suddenly the
computation of a seemingly impossible quantity became nearly trivial.
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This is worth explaining in more detail. A string traveling through
space-time carves out a surface; a closed string depicts a cylindrical surface
(world sheet or surfaces of higher genus). Quantum mechanically, a parti-
cle takes all possible paths, as Richard Feynman taught back in the 1g40s.
So in computing an amplitude—the probability of a three-string inter-
action—one must consider all the appropriate world-sheet embeddings in
the Calabi-Yau manifold. Now this manifold could well have uncontractible
holes in it (hollowed out spheres), and so the interaction among strings
must be corrected by terms corresponding to the string world-sheet wrap-
ping, in a minimal and smooth way, around these spheres one, two, three,
or more times. Such uncontractible topological defects are known as in-
stanton corrections, and increasing the number of wrappings corresponds
to making higher order corrections. From the mathematicians’ perspec-
tive, each winding number around a defect corresponds to a particular
degree curve on the quintic hypersurface. So what for the physicists was an
expansion yielding the quantum (instanton) corrections was for the math-
ematicians a series giving the number of curves from lines to conics, to
cubics, and so forth.?” But this identification while interesting was not yet
news. Neither physicists nor the mathematicians could compute the series.

Mirror symmetry broke the computational blockade. Suddenly the com-
putation on the size-changing (Kihler) manifold could be equated to the
shape-changing (complex structure) mirror manifold. All at once Candelas
and his collaborators had an answer to the enumerative geometers’ dream:
Even if the problem was intractable on the quintic hypersurface, any con-
formal field theory calculation there could be converted to the mirror mani-
fold that could then be deformed in shape as desired. But just this shape
invariance kept calculations on the mirror from being quantum corrected:
calculations on that side of the mirror equation could be done easily, and
explicitly, with some algebra and a Mac.*®

Astonishingly, at the end of a brief calculation, Candelas and crew had
the next member of the series, the till-then elusive number n,, that they
assessed at 317,206,375. But the mathematicians were dubious—the meth-
ods the physicists used corresponded to nothing remotely comprehensible
to the mathematicians. Conformal field theories, Feynman path integrals—
as far as the algebraic geometers were concerned, these were ill-defined
concepts plucked like a clutch of rabbits out of thin air. So coGgp went back
to their Mac and offered the mathematicians the next number, n,, and the
next after that, n,, all the way up the series to n_. To the mathematicians
the whole procedure, from start to finish, seemed dubious indeed.

Meanwhile, the Norwegian mathematicians, Geir Ellingsrud and Stein
Arild Stromme, were struggling with a direct, mathematically grounded,
geometrical computation of the number of rational curves. Both had taken
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mathematics degrees in Oslo, both had completed doctorates with the
same advisor (Olav Arnfinn Laudal), and they had been collaborating since
1978 on a range of mathematical problems surrounding the moduli spaces
for various geometric structures and in particular on cohomology or inter-
section theory. By 1987, they had cranked up a crude desktop computer, a
Sinclair Spectrum, to help with their computations, and, over the course of
the next years, they studied the space of twisted (rational) cubic curves.
Then in 1989 Ellingsrud and Strgmme met Clemens who, fresh from his
success in motivating Katz to count the curves of n,, now gave similar
encouragement to the Norwegians to reckon n,. Ellingsrud and Stromme
thought they could do it—after all, having completed years of work on
twisted cubics and their mobilized Spectrum, they thought they could find
intersections of the twisted cubics with just about anything. It was equally
obvious that the calculation of n, would be far too difficult to undertake by
hand. And so, though both were relative neophytes on the computer, they
pounded out a new computer package, using an algebraic program known
as Maple. For almost a year they worked at it until, in June 1990, the
computer displayed the fruits of its labor: n, = 2,682,549,425.

Instantly, they shot the ten-digit number over the Internet to Sheldon
Katz, Herb Clemens, and others; Katz electronically relayed the news to
Candelas:>

Dear Sheldon Katz, June 6, 1990

We finally got a number for the number of twisted cubics on the
general quintic threefold. I know that Geir saw you not long ago,
but he is out of reach for the moment so I ask you directly this
way what you know about the number. We get 2 682 549 425 =
5/ 2*17%6311881. I get the impression from your 1986 papers that
you only claim that the number is divisible by 5, but Herb Clemens
thought perhaps it should be 3*5”3. Obviously there is the possibility
of a programming error on our part (we used Mathematica, Maple
and Macaulay, and MPW to shuffle results back and forth between
these), but it would be most interesting if you can say right away that
this number has to be wrong. . . .

Best regards,

Stein Arild Stromme

Now Candelas found himself'in a complicated position. On the positive
side, he had a computer program that had produced a scatter plot strongly
indicating that mirror symmetry should work over a large class of mani-
folds and the mirror symmetry hypothesis squared with the older con-
jectures and the more recent constructions by Greene and Plesser. On
the negative side, he had a bevy of very dubious mathematicians. On the
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positive side again, he could reproduce the mathematicians’ n, (2,875) and
even the three-year-old result of Sheldon Katz for n, (609,250). All this
was remarkable. But the third member of the series, the long-sought n,
clashed directly. The Norwegians posted 2,682,549,425, and that was not
the same as physicists’ 317,206,375 no matter how you sliced it. These
were numbers that had to be the same, but they were not. Candelas and his
collaborators went over the calculation again and again. There would be no
middle ground: either the physicists or the mathematicians were wrong.

Between physics and mathematics

In part propelled by the clash over n,, a corps of mathematicians and
physicists scheduled a workshop at Berkeley’s Mathematical Science Re-
search Institute for 68 May 1ggr. From the physics side were Greene,
Dlesser, Candelas and his collaborators, Vafa, and Witten among others;
among those from the mathematics side Yau, Katz, Ellingsrud, Stromme,
and Shy-Shyr Roan. A lingua franca did not come easily, and each day’s
lectures were followed by intensive question sessions during the evenings.
As Yau put it, both mathematicians and physicists “each attempted to
grasp the vantage point and conceptual framework of the other.” Lan-
guage as well as specific expertise made communication exceedingly diffi-
cult. “As with any important new development which straddles traditional
academic disciplines, two pervasive obstacles facing prospective adherents
are the differences in language and assumed knowledges between the
respective fields.”* The “language gap” was echoed throughout the pa-
pers, as Greene and Plesser stressed in their contribution: “At present,
mirror symmetry finds its most potent expression in the language of string
theory,” for it was principally the fact that both manifolds contained iden-
tical physical theories—the same conformal field theory—that vouchsafed
(for physicists) the equivalence of the underlying manifolds.* Mathemati-
cians, by contrast, simply took “string” to be a “mnemonic” for a more
precise definition.*

Despite—or perhaps because of—the numerical clash, David Morrison, a
mathematician from Duke University, saw in Candelas’s form of argumen-
tation something important for mathematicians. Exactly what was harder
to say. “The language problem,” as Candelas put it, “is a very difficult
barrier to surmount.” Some of the problem revolved around specific
concepts, as Candelas noted:

There were aspects of this that had been terribly mysterious—very hard
to think of modularity space and how you moved around it. Mono-
dromies—to a physicist a complex structure was to be understood by
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hypergeometric functions represented by integrals. The really funda-
mental thing would always be these integrals, though as the calcula-
tions got more complex, one encountered higher-dimensional ver-
sions of these hypergeometric functions. For the physicists the fact
that if you walked around a singularity, it was mysterious that quan-
tities altered in certain ways.** ‘

Mathematicians saw not mystery in the movement of these points around
the surfaces but straightforward geometry. Monodromies—well known
geometric entities—were quantities that were locally single-valued but
changed values if one took them around a nontrivial closed path. Con-
versely, for the mathematicians the existence of mirror symmetry itself was
mysterious. For the physicists, however, it was not—it came out of “natu-
ral” assumptions about the conformal field theory—and the key quantita-
tive features, coefficients of various quantities, were merely factors that had
to be introduced to keep track of coordinate changes.

For the algebraic geometers the idea of treating key coeflicients as if they
were a coordinate transformation appeared unrigorous, even arbitrary, as
Morrison made clear in a talk during July 1991, a talk in which he deliber-
ately tried to place the physicists’ result in a language familiar to mathe-
maticians from standard techniques in number theory:

By focusing on this g-expansion principle, we place the computation
of [coGP] in a mathematically natural framework. Although there
remain certain dependencies on a choice of coordinates, the coordi-
nates used for calculation are canonically determined by the mono-
dromy of the periods, which is itself intrinsic. On the other hand, we
have removed some of the physical arguments which were used in the
original paper to help choose the coordinates appropriately. The re-
sult may be that our presentation is less convincing to physicists.*

Indeed, while to a physicist the invocation of a patchwork of plausibility
arguments was entirely reasonable, to the mathematicians, the physicists’
formulations looked ill-defined, practically uninterpretable. Morrison con-
tinued his quotation from coGP to show the mathematicians just how
cryptic it looked in the original: “To most pairs (X,S), including almost all of
interest in physics, there should be associated . . . .” What, Morrison asked,
was the scope of “almost all,” especially when applied to a category picked
out by the (mathematically) incomprehensible property “of interestin phys-
ics”? To this he added: “To be presented with a conjecture which has been
only vaguely formulated is unsettling to many mathematicians. Neverthe-
less, the mirror symmetry phenomenon appears to be quite widespread, so
it seems important to make further efforts to find a precise formulation.”*
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Again, Morrison took an extract of the COGP papet, and while emphasiz-
ing throughout his argument that the physicists’ conjecture was of great
interest, he concluded that the formulation struck mathematicians as com-
pletely unrigorous. From cOGP, he reproduced, verbatim, the justification
for their formula that counted rational curves on quintic threefolds:

These numbers provide compelling evidence that our assumption
about the form of the prefactor is in fact correct. The evidence is not
so much that we obtain in this way the correct values for n_ and n,, but
rather that the coefficients in equation [K, = 5 + 2875 exm g
4876875 e*™ ' + . . . ] have remarkable divisibility properties. For
example the assertion that the second coefficient 4,876,875 is of the
form 2* n, + n, requires that the result of subtracting n, from the
coefficient yields an integer that is divisible by 2°. Similarly, the result
of subtracting n, from the third coefficient must yield an integer divis-
ible by 3. These conditions become increasingly intricate for large K.
It is therefore remarkable that the n, calculated in this way turn out to
be integers.*’

“These arguments,” Morrison added, “have a rather numerological flavor”
reminiscent of the physicists’ speculations about the “monster group”
that mathematicians had at first labeled “moonshine.”** Maybe this case
of mirror symmetry would turn out to be more than moonshine, too. But,
as Morrison noted, there remained the stubborn numerical obstacle pre-
sented by the Norwegian mathematicians: “Unfortunately, there seem to
be difficulties with n_.”

As Ellingsrud and Stromme mentally stepped, line by line, through their
program, a glitch suddenly leapt out at them. Two subroutines, “logg” and
“expp” figured in the calculation, routines related to ordinary logarithmic
and exponential functions. Just as in ordinary logarithms on a slide rule,
these little programs sped up the manipulation of truncated power series
expressions, reducing multiplication and division to simple additions and
subtractions. But where, ordinarily, these functions were applied to terms
that had constant terms equal to 1 (where the log of 1 is 0) in this applica-
tion, the constant term, W1, was not unity. And since “logg” ignored the
constant terms, any information contained in Wr was lost. The next line’s
routine, “expp” could not retrieve it. The instant that logg hit W1, the
calculation was doomed.

Swapping out the faulty lines, they reran the program. And on Thursday,
31 July 1991, the mathematicians’ barrier vanished: their computer too
spat out n, = 317,206,375. Herb Clemens received an email from the
Norwegians and immediately forwarded it to Candelas with its white-flag
header: “Physics wins!”
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Date: Wed, 31 Jul 91 11:06:34 MDT
From: Herb Clemens (xxx@xxx.edu)
To: candelas@yyy.edu

Subject: Physics wins!

Message-Id: (aaa@xxx.edu)

To: Herb Clemens {(xxx@xxx.edu)

From: stromme@zzz (Stein Arild Stromme)

Dear Herb,

we just discovered the mistake in one of the computer programs.
Once that was corrected, our answer is the same as that of Candelas &
Co.Iam glad we found it at last!

Best regards,

Stein Arild

Returning to the electronic preprint file, Morrison drew a line through the
words “Unfortunately, there seem to be difficulties with n,” and inscribed,
“Not any more!”* To Joe Harris at Harvard, Geir Ellingsrud shot a similar
electronic concession, probably also that same day:

We found an error in the program we use computing the number of
twisted cubics on quintics a few days ago. After having fixed it, we
now get the same number as the physicists. I feel a little bad about not
having discovered the error before, but that’s life and for mathematics
I think the outcome is the best. Please tell Yau and the others about it.
Best regards, Geir.*

It was a hard turn of events for Ellingsrud and Stromme. Harris offered
some consolation in a return email: “Don’t feel bad about the miscalcula-
tion, though—it seems to me that the point of all this is not the number but
the ideas and techniques, and those are if anything vindicated. Joe.”**
During the summer of 1991, while Morrison was struggling with the gap
between mathematicians’ and physicists’ views, Sheldon Katz arrived at
Duke for a previously scheduled, year-long visit. The two of them began
interrogating the physics graduate students and inscribed lists of terms on
the blackboard, a list beginning “conformal field theory,” “correlation
functions,” and continuing on from there. The next year, Morrison shared
an office with Brian Greene at the Institute for Advanced Study, and they set
aside an hour each day to lecture to each other. By the time Greene and Yau
had assembled a second major mirror symmetry volume in 1997, the
joining of mathematics and physics was legible in the author list: now
instead of explaining the physicists’ work to the mathematicians, Morrison '
and Greene, among others, were coauthoring papers. “One of my roles,”
Morrison commented a few years later, “is as an interpreter between the
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two communities. They are after different things and I've tried hard to
maintain the distinctions. Mathematicians want to know which parts of
this stuff are proven rigorously and which parts are conjectural. Physicists
don’t see that—they don’t like to be told something is nota theorem. They
have an argument and think it is so. Different standards.”**

The borderland prospered. Physicists and mathematicians alike began
talking about geometry in a radically new way. Ordinary geometry—the
geometry built up out of points—held a special relation with a physics
predicated on point particles. But now that strings were beginning to
take over, it was becoming apparent that the point-based geometry was
only a limit, just the way at distances large compared to the Planck scale
of 10™% cm, space “looked” as if it were made up of points. So it was
imagined to be in geometry: another geometry, the hidden half, so to
speak.®* String theory, on this interpretation, offered that generalized ge-
ometry and reduced in an appropriate limit to classical geometry. The
situation was analogous to a noncommutative algebra of quantum opera-
tors that reduced to the commutative case as the Planck constant h headed
to zero.

Mirror symmetry was but one of the boundary regions increasingly pop-
ulated by both string theorists and mathematicians. Edward Witten used
the conformal field so essential to string theory to prove novel results in
the theory of knots, and string theory led to a new understanding of an
enormous simple finite discrete group dubbed the Monster and a host of
new insights into, inter alia, Donaldson theory of 4-manifolds and a new
proof of the Atiyah-Singer index theorem.> Writing to the National Sci-
ence Foundation in 1994, Witten and mathematician Pierre Deligne, his
colleague at the Institute of Advanced study, outlined a plan designed to
capitalize on this new domain. “For most of the past hundred years,” they
wrote, “the role of theoretical physics has been to explain known ex-
perimental or observational phenomena and to make predictions that then
lead to further experimentation.” Such ventures covered a broad range of
phenomena from quantum mechanics to general relativity, all of it bor-
rowed from already extant mathematics, including Riemannian geometry.
“In such significant historic examples, the mathematics did not drive the
physics, but it was ready at hand and utilized by the physicists with little
need for reference back to the mathematical foundations.”*® Now that was
changing, the authors argued. With physicists digging deeper into string
theory, it became apparent that the required mathematics did not exist—
though isolated pieces of recent math had proved useful.

Because the larger part of what they required was not available, they have
pushed the mathematics, frequently on an ad hoc basis, leading to star-
tling predictions. Physicists’ arguments do not automatically translate into
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mathematical proofs but have yielded striking new mathematical ideas and
results. These results have usually involved what physicists perceive as
manifestations of the unknown new conceptual-geometical framework of
string theory.

The structure of this common cause would involve senior mathemati-
cians who “can listen to the physicists and communicate their ideas to
[other] mathematicians in a way that captures the physical context of their
thought.” The geographical scope of possible mathematical recruits in-
cluded mrt, THES, Tohoku, Oxford, and Cambridge. Physicists would
come from Harvard, ucLa, the University of Chicago, Tokyo, Texas A&M,
and ucsB. Four to six “younger researchers” would enter the program to
“develop in ways noticeably different from those of their colleagues who
are more traditionally focused, either in mathematics or physics [the new
breed of researcher] should feel equally at home in both worlds.””

Contested boundaries

The National Science Foundation replied, with regrets. It is of great interest
to understand why. One referee began by lauding the contributions of the
principal investigators, and celebrated the increased use of physics by
mathematicians. But “I do not think that this activity [on the border be-
tween mathematics and physics] should result in the production of a large
number of physics students who would work in this field.” Others reiter-
ated that sentiment: excellent investigators but the NSF should pause be-
fore further “populating” the border region. “I fear,” another wrote, “that
in this case the results may be analogous to those obtained by axiomatic
field theory in the past—which did not further physics understanding of
field theory in a substantial way.” The harshest critic agreed in his praise
for the leaders (Witten “is probably the best person in the entire galaxy to
lead the proposed program”) but the program itself raised fundamental
questions about the direction of physics. “My conscience would not rest if I
did not record those doubts here, even though I am fully aware that my
opinion is highly contrarian.” The referee continued:

I tend to think that the most conspicuous development of the last
decade is the training of a generation of very bright young theorists
who know and care more for geometry and topology than for the
standard model and current experimental efforts to discover the next
step beyond it. Since I am convinced that the key advances in physics
emerge from physical rather than mathematical insight, I must view
this as a negative development. I think that theoretical physics would
be in better shape if this group of very capable people had been taught
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to practice research with better balance between physical fact and
mathematical intuition.>®

Ultimately, this evaluator’s greatest concern was not for the mathemati-
cians but for the physicists, especially young ones, whom the program
“would tend to subvert.” Mathematics, the referee continued, was a tool,
but one that must be secondary to the concerns of a fundamentally physical
nature. “The main goal of theoretical physics is to understand the laws
of nature, and for most of the 2oth century this has involved a closer
connection between the most capable theorists and experiment than exists
today in particle physics.”>® What was needed, this reviewer argued, was
an amplification, not a diminution of that bond between laboratory and
blackboard.

After revision, Witten and Deligne resubmitted the proposal, armed with
a more detailed exposition of new results—this time successfully. Again
they aimed to create an environment that would allow mathematicians
to explore links between previously disconnected mathematical domains,
fields that, to the physicists, appeared manifestly linked: “before the cur-
rent period, mathematicians have tended to try to treat each idea coming
from physics as a separate, isolated phenomenon, with proofs to be given
in each case in an ad hoc fashion, unrelated to the context in which the ideas
appeared.” It was necessary, Witten and Deligne argued, for the mathe-
maticians to step beyond such a piecemeal approach, to see the physicists’
problematic in its “natural context,” not in vitro. For the string physicists
over the two years prior (1993—95), it had become common wisdom to see
the various different string theories as asymptotic versions of some un-
known, underlying theory. And grasping the mathematics of this theory—
in the absence of the fundamental symmetries, variables, and geometrical
ideas governing it—was exceedingly difficult and would surely involve both
new physical ideas and “mysterious new mathematical structures.” At
stake, the authors contended, was the future: “The extent of success in
understanding what that theory really is will very likely shape the fate of
physics in our times.”* The referees concurred; funding followed.

Once approved, prospective applicants found descriptions of the planned
math-physics collaboration on the Web, including one posted on 15 Decem-
ber 1995 that sought to differentiate the current collaboration from previous
uses of physics by mathematics:

It is not planned to treat except peripherally the magnificent new
applications of field theory. . . . Nor is the plan to consider funda-
mental new constructions within mathematics that were inspired by
physics, such as quantum groups or vertex operator algebras. Nor is
the aim to discuss how to provide mathematical rigor for physical
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theories. Rather, the goal is to develop the sort of intuition common
among physicists for those who are used to thought processes stem-
ming from geometry and algebra.*

1 have used the 1As as an example but it was not alone in its search to
create a new kind of scientist, a new personhood in science, if youwill, one
not only with particular problems and procedures but with a hybrid way of
thinking. At stake were not only “thought processes” and “intuitions” but
ultimately identity. Small wonder that the move met resistance. Some par-
ticle theorists—several of whom had been coauthors with some of the
principal string theorists—took the withdrawal of string theory from ex-
periment as the harbinger of a dark age of speculation. Charges of “theol-
ogy” echoed off the walls, and the battles were fought over positions from
graduate student through postdoc, junior, and senior faculty positions.
The first round of NSF referees’ responses to the Institute for Advanced
Study’s “Integrated Program” was but one site that revealed these tensions;
similar battles erupted in physics departments across the country, pre-
cipitating a far-reaching debate over the nature and meaning of theoretical
physics.

If the string theorists were to use mathematics as their new constraint
structure, they had to find a modus vivendi with the mathematicians. And
here the results were contradictory, informatively contradictory, forcing to
the surface long-dormant resentments and ambitions. That they would
need the mathematicians, however, was clear. Precipitating this stage of
the debate was an article published by Arthur Jaffe from Harvard and Frank
Quinn from Virginia Polytechnical Institute—both mathematical physicists
heading mathematics departments in the early 1g9gos. Titling their July
1993 piece, “ ‘Theoretical Mathematics’: Toward a Cultural Synthesis of
Mathematics and Theoretical Physics,” in the Bulletin of the American Mathe-
matical Society, they unleashed a torrent of response by public and private
email and in print—and in the process surfaced views about the nature and
importance of theoretical and mathematical culture. Jaffe and Quinn began
by recounting how the string theorists had lost their historical tie to experi-
ment and then continue:

But these physicists are not in fact isolated. They have found a new
“experimental community”: mathematicians. It is now mathemati-
cians who provide them with reliable new information about the
structures they study. Often it is to mathematicians that they address
their speculations to stimulate new “experimental” work. And the
great successes are new insights into mathematics, not into physics.
What emerges is not a new particle but a description of a representa-
tion of the “monster” sporadic group using vertex operators in Kac-
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Moody algebras. What is produced is not a new physical field theory
but a new view of polynomial invariants of knots and links in 3-mani-
folds using Feynman path integrals or representations of quantum
groups.*

Here we have the crux of the issue. Physicists were using their standard set
of tools (such as Feynman path integrals, vertex operators, and representa-
tions of quantum groups) to solve mathematicians’ problems—and not
trivial ones, either: representations of the Monster sporadic group, poly-
nomial invariants of knots and links in 3-manifolds. Suddenly, the hard-
won theorems of mathematics were being exceeded by methods the mathe-
maticians found utterly lacking in rigor.

Rather than reject this incursion into mathematical territory out of hand,
jaffe and Quinn wanted a “dignified” name for the activity that would
nonetheless isolate it from the mainline of rigorous mathematics. Borrow-
ing from physics itself, they chose the name “theoretical mathematics”:
“The initial stages of mathematical discovery—namely, the intuitive and
conjectural work, like theoretical work in the sciences—involves specula-
tions on the nature of reality beyond established knowledge. Thus we
borrow our name ‘theoretical’ from this use in physics.”®

By employing the term theoretical mathematics in this way, they deliberately
displaced two older, competing notions of theoretical. On one hand, they
refused to identify “theoretical” in mathematics with the “pure” in contrast
to “applied” mathematics. On the other hand, they refused to employ
“experimental” mathematics to designate computer simulations—for in
fact they took such speculative explorations to be under their categoriza-
tion, “theoretical.”%*

So far, just a redefinition. But words alone could not efface the different
ways in which the two groups treated some of the same sets of symbols.
Both mathematicians and physicists might want to characterize the knots
and kinks in 3-manifolds, but the methods that each group used led to a
direct confrontation:

Theoretical physics and mathematical physics have rather different
cultures, and there is often a tension between them. Theoretical work
in physics does not need to contain verification or proof, as contact
with reality can be left to experiment. Thus the sociology of physics
tends to denigrate proof as an unnecessary part of the theoretical
process. Richard Feynman used to delight in teasing mathematicians
about their reluctance to use methods that “worked” but that could
not be rigorously justified. He felt it was quite satisfactory to test
mathematical statements by verifying a few well-chosen cases.®
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Complementing Feynman’s views, Glashow lambasted overly mathemati-
cal string theorists: “Until the string people can interpret perceived prop-
erties of the real world, they simply are not doing physics. Should they
be paid by universities and be permitted to pervert impressionable stu-
dents?” Conversely—and Jaffe and Quinn did not hesitate to raise the
point—mathematicians had no great respect for the weightiness of physi-
cists’ contributions to knowledge. In one anecdote that resonates on a
gendered as well as epistemological level, they likened the physicist’s proof
to the woman who traced her ancestry to William, the Conqueror . . . with
only two gaps.

Exaggerating for emphasis, many mid—twentieth-century physicists
thought that mathematicians were supererogatory and mathematicians
thought that physicists were superficial. But by 1992, neither side could so
lightly dismiss the other; in the past their fiefdoms had been at sufficient
remove that each could polemicize at a distance. Now they overlapped on
territory vital to both.

Branches of algebraic geometry had become a trading zone—with each
side contributing to it, each interpreting joint results differently. For the
physicists, mirror symmetry along with other dualities promised to be-
come some of the most powerful theoretical tools they had available. It
showed how some of the string theories might be further reduced by dem-
onstrating their equivalence—and even offered a deep geometrical under-
standing all the way down to Lagrangian quantum field theory and classi-
cal electrodynamics. On the mathematical side, new forms of calculation
corrected their own work and extended it in certain cases infinitely beyond
their previous capacities.

Stepping between the fields was delicate work, as Morrison indicated in
his contribution to the 1997 mirror symmetry volume. He argued that the
enumerative geometry results gained through the new techniques were
physically powerful, but that they should be used with mathematical cau-
tion: “The calculations in question can often be formulated in purely math-
ematical terms, but it should be borne in mind that the arguments in favor
of the equivalence of the answers . . . rely upon path integral methods
which have not yet been made mathematically rigorous. For this reason,
mathematicians currently regard these calculations as predicting rather than
establishing the results.”®®

One mathematical response to the unlocking of these mirror equiva-
lents and similar string theory successes was a full-tilt emulation by
some senior mathematicians of physicists’ style of work. It was a route,
Jaffe and Quinn cautioned, that was a minefield, littered with danger.
Imitation had
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happened without the evolution of the community norms and stan-
dards for behavior which are required to make the new structure
stable. Without rapid development and adoption of such “family val-
ues” the new relationship between mathematics and physics may well
collapse. Physicists will go back to their traditional partners; rigorous
mathematicians will be left with a mess to clean up; and mathemati-
cians lured into a more theoretical mode by the physicists’ example
will be ignored as a result of the backlash.*

Only “truth in advertising” could avoid the disciplinary rendition of this
(unconventional) family romance: when proofs were nowhere in sight,
practitioners ought to label their wares “theoretical,” and both “theoreti-
cal” and “experimental,” proof-governed mathematics ought be credited
by the community.

Reaction to Jaffe and Quinn was swift, some of it laudatory and some
condemnatory. In a flurry of email to the journal in early 1994, some of the
most senior mathematicians and physicists responded. Michael Atiyah, a
senior mathematician and master of Trinity College, took up the question
of values. He pointed out that this admixture of algebraic geometry and
string theory (as opposed to previous ones) engaged “front-line ideas” in
both areas. This was no sideshow, setting foundational questions straight
for already-accepted physical theory. No, these new developments “might
well come to dominate the mathematics of the 21st century.” Still, he
castigated Jaffe and Quinn for emphasizing the danger to mathematicians
of being “led astray”: “I think most geometers find this attitude a little
patronizing: we feel we are perfectly capable of defending our virtue.”®®
Others were less sure of the mathematicians’ capacity to defend their repu-
tations, especially when it came to “the young” and “the impressionable
students.”

Throughout their piece, Jaffe and Quinn came back again and again to
the necessity of imparting values as part of the educational process. At
the first level, this meant physicists had to accord mathematics the same
respect, the same necessity that experiment had previously: “students
in physics are generally indoctrinated with anti-mathematical notions;
and if they become involved in mathematical questions, they tend not only
to be theoretical but often to deny that their work is incomplete.”*® Mathe-
maticians, in turn, had to ward off the undue temptations that the purely
speculative would have for their young. Jaffe and Quinn: “We suggest it
is a dangerous thing for a student who does not understand the spe-
cial character of speculative work to set out to emulate it.””* The con-
sequences of ignoring these dangers were catastrophic: “theoretical
[mathematical] work” could lack feedback; further work could be dis-
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couraged and confused because unreliable; “dead areas” could be created
when all credit fell to theorizers; and more generally, the young could be
“misled.”™

Sounding more like sociologists of science than the chairs of two major
math departments, Jaffe and Quinn underscored the inseparability of val-
ues and cognitive content: "

Mathematicians tend to focus on intellectual content and neglect the
importance of social issues and the community. But we are a commu-
nity and often form opinions even on technical issues by social inter-
actions rather than directly from the literature. Socially accepted con-
ventions are vital in our understanding of what we read. Behavior is
important, and the community of mathematicians is vulnerable to
damage from inappropriate behavior.”?

No one was more sympathetic to Jaffe and Quinn’s moral crusade to guard
against such “damage” than Steven Krantz, a fiercely harsh critic of Yale’s
Benoit Mandelbrot and his fractal enthusiasts. In an email shot to Jaffe on
16 November 1992—Dbefore the article had even officially appeared in print,
he recalled an incident from his own early days in mathematics: “When 1
was just starting out in this profession Richard Arens came up to me at a
party and said ‘Young man, do you want to be famous?’ Of course I said
‘Yes.” He replied, ‘Well, then, go [mess] up a subject.” Truer words were
never spoken.” His rage at what he perceived as the mathematical sloppi-
ness of some physically oriented geometers was redoubled precisely be-
cause of the fame it had brought them. “The people who do fractal geome-
try,” he continued, “are notjust confused. They are amoral. If you could get
one of them to sit still long enough to read your article, they would not have
a clue what you are talking about. Their speculation is uninformed, point-
less, and has contributed nothing to the pool of scientific knowledge.
Much of it is poached.””® Even the softened version of Krantz’s objections
that Jaffe and Quinn cited in their “two cultures” piece relit the fire. Man-
delbrot promptly retorted to Jaffe and Quinn that he found their unasked-
for labeling of some mathematicians as “theoretical” to be a kind of “po-
lice state within Charles mathematics [mathematics centered around the
Charles Street (Providence, Rhode Island) headquarters of the Ams] and a
world cop beyond its borders.”™

Here then was the bottom-line issue: a struggle over the very meaning of
theory that was inseparably about technicalities, rigor, credit, pedagogy,
and professional identity. Saunders Mac Lane, one of the deans of algebraic
topology, retired from the University of Chicago, vehemently protested the
notion of theory proposed by Jaffe and Quinn:
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[Jaffe’s and Quinn’s] comparison of proofs in mathematics with ex-
periments in physics is clearly faulty. Experiments may check up on a
theory, but they may not be final; they depend on instrumentation,
and they may even be fudged. The proof that there are infinitely many
primes—and also in suitable infinite progressions—is always there.
We need not sell mathematics short, even to please the ghost of

Feynman.

Since World War I1, he contended, physics had played the dominant role in
American science—but the discipline was itself now in trouble. Mathemati-
cians need not, ought not, pine after the methods of this crepuscular
science. “Mathematics does not need to copy the style of experimental
physics. Mathematics rests on proof—and proofis eternal.””

Tied to pedagogy, credit, and epistemic security, ultimately the culture
war over theory had consequences for “reality,” as Morris W. Hirsch, the
Berkeley algebraist and differential geometer, made clear. His claim was
that however much Jaffe and Quinn protested that they wanted to eschew
terminology per se, they still wrongly spoke about “mathematical reality”:
“It is important to note at the outset that their use of ‘theoretical’ is tied to a
controversial philosophical position: that mathematics is about the ‘nature
of reality,’ later qualified as ‘mathematical reality,” apparently distinct from
‘physical reality.’ They suggest ‘Mathematicians may have even better ac-
cess to mathematical reality than the laboratory sciences have to physical
reality.” ” On Hirsch’s view, mathematics was not a theory of anything, and
certainly not of a special branch of reality. Neither poems nor novels “re-
ferred,” and mathematics was no different. True enough, Hirsch said,
physicists used mathematics as a tool with which to construct “narratives”
(his term). They might be telling a story about how a certain system worked
and would use the concepts of mathematics to continue, as for example
they characteristically would do when invoking the assumption of equi-
librium, nonzero determinates, or the independence of random variables.
But the uses of mathematics (on Hirsch’s view) spoke not a word about the
intrinsic referentiality of mathematics itself, and if, as he believed, “mathe-
matical reality” was idle chatter, then the very category “theoretical mathe-
matics” ought cede to the ontologically neutral one: speculative mathemat-
ics.” For many, including James Glimm from Stony Brook, more was at
stake in this struggle than the referential structure of mathematics:

It bears repeating that the correct standards for interdisciplinary work
consist not of the intersection, but the union of the standards from
the two disciplines. Specifically, speculative theoretical reasoning in
physics is usually strongly constrained by experimental data. If math-
ematics is going to contemplate a serious expansion in the amount of
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speculation [it will] have a serious and complementary need for the
admission of new objective sources of data, going beyond rigorously
proven theorems, and including computer experiments, laboratory
experiments and field data. [The] absolute standard of logically cor-
rect reasoning was developed and tested in the crucible of history.

Such standards, Glimm concluded, had to be preserved and defended in
the rapid expansion of mathematical horizons.”

On the cultures of theory

String theorists, prominently among them Edward Witten, took their his-
tory from the young Einstein—the Einstein who constructed general rela-
tivity with the barest of experimental ties, such as the precession of the
perihelion of Mercury. Georgi and Glashow, arguing against string theory,
called to the stand a different historical Einstein—the aging hermit chasing
after the illusion of unification, self-blinded to the worlds of Lagrangian
quantum field theory, meson exchange, and new particles.

Mathematicians and mathematical physicists including Quinn, Jaffe,
Mac Lane, Glimm, and Atiyah also battled over histories—the collapse of a
brilliant but in some mathematicians’ view too speculative Italian algebraic
geometry versus the path-breaking formulae of Euler’s divergent series or
Ramanujan’s number-theoretical insights. These wars over the past were
tightly coded interventions aimed more at shaping the future than on
chronicling the past. Would physics students learn about cross sections,
Lagrangians, and particle lifetimes? Or would they train in Calabi-Yau man-
ifolds, knot theory, and topological invariants? Would mathematicians
learn to think in terms of physics categories like vertex operators, con-
formal field theories, and Feynman integrals? Or would they guard the
proof structure of Bourbakian morality, “family values,” and disciplinary
traditions? These prophesies and evaluations were not “outside” the cre-
olized physicomathematics of strings—they helped, in no small measure,
to constitute it. Through shared institutions and intuitions, mathemati-
cians and physicists are constructing a conjoint field of inquiry, whether
one calls this trading zone “quantum geometry” or situates it within string
theory or algebraic geometry. Joint appointments, common conferences,
research collaborations, and training methods all have created a substan-
tive region of overlap in practices and values. From the perspective of this
account, it is perhaps not surprising that by 1999 the mathematics depart-
ment at Columbia began demanding that its graduate students take a
course in quantum field theory. Even ten years earlier, such a requirement
would have been unthinkable.
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By creating such a substantial border region, more than results have
shifted. As the “contrarians” rightly noted, these alterations signaled a shift
or perhaps an expansion in the meaning of theoretical physics and algebraic
geometry. And with these changes, what it means to be a geometer or a
theoretical physicist altered as well. The next generation of mathematicians
and physicists would know a different world from their elders: in addition to
physical sites (such as the Institute for Advanced Study at Princeton), they
would also frequent virtual places, such as the joint mathematics and
physics “Calabi-Yau Home Page” that, by the end of the twentieth century
were already joining activities and techniques in the border zone. Trained
differendy from physicists in the 1g70s or 1980s, working to different
standards with different tools, it became possible for a young investigator to
say: “I don’t know whether I am doing physics or mathematics,” an utter-
ance either unthinkable or unacceptable even a few years earlier. With the
new sense of theoretical physicist and geometer came also a new object of
inquiry: in its present form not quite mathematical and not quite physical,
either. One day pieces of such entities may be folded back into physics or
into geometry, but at century’s end they were conceptual objects, hugely pro-
ductive and yet seen with discomfort by purists in both camps.

In the late twentieth century, understanding the shifting cultures of the-
ory was not just of abstract significance. It was a problem of urgent concern
to leading physicists and mathematicians; these debates would shape cen-
tral features of their disciplines into the next century. Because this dynamic
so thoroughly mixed constitutive values with the disciplinary identity of the
practitioner and the allowed objects of inquiry, the story of this hybridized
mathematics and physics raises equally pressing concerns for historians,
sociologists, and philosophers of science. Our histories and our shifting
present are always reconstituting the triad: persons, values, and objects.
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