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PETER GALISON 

RANDOM PHILOSOPHY 

1. INTRODUCTION 

Somewhere, in any computer-based Monte Carlo simulation, is a line of code that 
produces random numbers. With names like RANDU, RANDOM, RANF, or RNDM, 
the command is innocuous, a single, practically invisible step in a program that could 
run to hundreds of lines. Indeed, in the 1960s, the then-standard IBM 709 came oufitted 
with a random generator that was used around the world to produce simulations of 
phenomena ranging from nuclear weapons and airplane wings to the impact of pions 
on protons, from weather modelling to the analysis of number theory. In this brief 
paper, I want to take out the philosophical magnifying glass and peer into the 
epistemological and metaphysical changes at work behind the code. 

The idea of a Monte Carlo is not complicated: by sampling randomly from a set of 
points one can often approximate a volume. Throw darts at a circle inscribed in a 
square and count the ratio of poinl<J in the circle to the number of hits inside the square 
(including both those in the circle and those between the circle and the perimeter of the 
square). That ratio gives an approximation of the ratio of the circle area to that of the 

square (:ni4). Similarly, one could take a function fix) and rough out its integral /;, f(x)dx 

· •. by"throwing darts" at the rectangular region defined from x a to x = b and by an 
interval of values of y = fix) from some point below the minimum of f(x) in [a,b] and 
themaximum of fix) in [a,b]. The ratio of hits below the curve fix) to the number of 

hitsnot below the curve then approximates the ratio of the area /;, f(x )dx to the area of 

the whole rectangle. In other words one uses random points to fill out a series of pairs 
(,\, y

1
)counting as hit points such that y

1 
</(x) and divides by the total number of pairs 

tried~this approximates .E J(x)dx. 

Generalizing from such considerations, the Monte Carlo can be used to sample­
estimate the definite integral of a high-dimensional definite integral, a feature valuable 
ina!I manner of problems from hydrodynamic flow to the intricacies of thermonuclear 
,weapons design in which radiation transport, fusion, Conwton effects, and a myriad of 
9ther processes are at work. Strikingly-amazingly it has seemed to some- these 

roximations could, with increasing numbers of sample points, converge to the "true" 
y.une of the definite integral at a rate far exceeding any previously-known method of 
iif~1merical integration. 

The Monte Carlo Method, invented by mathematician Stanislaw Ulam and 
athematician/physicist John von Neumann towards the end of World War II, was 
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initially used to calculate the physics of fission weapons, especially the physics of neutrons in 
the chain reaction. Such tasks gobbled random numbers at an alarming rate, and without a 
ready and reliable supply, the process of launching trial "throws" such as the choice of (x,, Y;) 

would come to a screeching halt. Generated from electrical noise, from the alpha decay of 
radioactive minerals, and from the arrival times of cosmic rays, these "true randoms" were 
compiled and published in books. Putting aside the conceptual difficulty of taking a published 
hardbound volume of true random numbers off the shelf (how often could people begin their 
series 947826 and still consider it random?) the pedigree of these digits was impeccable. "True 
randoms", physically-generated random numbers, could be thought of as truly standing for the 
world: what could be more natural than using alpha-decay-produced randoms to model the 
diffusion of neutrons inside a reactor core? Even when the process to be modelled was not 
itself random-as in the evaluation of a finite integral-numbers were needed fast and plentifully. 

To accelerate the early simulations to the point where they could be useful, von Neumann 
introduced the notion of pseudo-random numbers. Instead of plucking digits off a list of the 
true randoms, von Neumann proposed that a suitably chosen algorithm could generate a series 
of digits that "for practical purposes" could serve more or less as well. For example, one could 
take an eight-digit number (from a "true random" book, if one so wished) square it and excise 
the middle eight digits. This new group became the seed for the next one: square the eight 
digits and extract the central eight digits of the result. The computer itself could continue in this 
way, ad libitum. 

Now from the instant of von Neumann's proposal, it was manifest to him that this sequence 
of pseudo-randoms was not and could never be "random." There are, after all, only 108 eight­
digit numbers. So in at most 108 repetitions of this game, an eight-digit sequence will repeat. 
When it does, as sure as the sun rises in the east (more surely, actually) the algorithm will 
repeat the exact sequence of numbers it got the first time around. So the sequence is not random­
much worse, it is an eternal, precisely repeating cycle. We are living in a state of sin, von 
Neumann confessed to a colleague, when we use Monte Carlos. Still, the sequences and their 
owners worked with a pragmatic confidence. If the sequence passed its tests all was fine. Or 
was it? 

To certify the pseudo-random generators, physicists and their mathematical colleagues 
developed a series of tests. Were the digits equitably distributed-that is, were there roughly 
the same number of Os, l's, 2's, ... and 9's? Were there correlations between the fh and (i+k) th 

digit, where k was 1, 2, 3, ... up to some reasonable value of k? One author somewhat cynically 
captured the philosophy of the idea this way: "if a pseudo-random number has passed a certain 
number of tests, then it will pass the next one where the next one is the answer to our problem." 1 

It was, nonetheless, hoped that generators could be designed such that repetitions and correlations 
could be excluded at least for a long-enough sequence for the simulation to run. "Tests of 
randomness" would vouchsafe the "approximate randomness" of the series. 

But as James's wry motto made clear, it was not at all clear which tests, of the infinite 
number that could be made, would actually be most useful as guardians of the true random 
faith. Just how fragile the whole apparatus was became manifest in 1963 when high energy 
physicist Joseph Lach became suspicious of the generators he and everyone else had been 
using. 2 Instead of asking after the equidistribution and k-correlations ( correlations between the 
ith and (i+k)"' term), Lach pursued the correlations of triplets on at least a fraction of their range. 
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More specifically, he called up the Fortran number generator RANNO (which produced pseudo­
randoms between O and 1.0), and had the computer sequentially hunt down the first number 
less than 0.1. He then programmed the computer to plot the next two numbers designated :r 
and Yr as a pomt on an xy plot on his CRT. Then the computer hunted down th~ next numb~; 
that was less than 0.1 _and once again made a pair out of the next two numbers, designating 
them (x2'. Y) and poppmg _them onto his screen. Continuing in this way, the computer "ought" 
to have filled 1~s screen with (xe y) equitably splashed over the screen like the gray static of a 
TV set. It d1dn t. Instead of "randomness" Lach saw sharp black diagonal lines- bands of no 
pomts at all. The messag_e was as disturbing as it was clear: the black bands announced that 
RANNO,_ havmg passed its other tests with flying colors, had failed the triplet correlation test 
m the region O < Z; _< 0.1. Even if one cooked up a pseudo-random generator that did pass the 
tnplet test, the question lurked: would 1t do so for quadruplets, quintuplets, and higher multiplets? 
Virtually every computer m the world was producing manifestly unrandom randoms. The source 
of the difficulty was, as George _Marsaglia of Boeing Scientific Laboratories showed, in the 
very nature of the so-called mult1phcative congruential generators of the form 

r; = [a r; 1 + b] (mod m) 

where m was 2 raised to the word size of the computer in use. For example for a 5-bit word one 
held m = 32, and (for example) choosing arbitrarily a= 21, b =1, r

0
= 13, yields 

r1 = [(21)(13) + l]mod(32) =274/32, 

which has a remainder of 18. Now set r1 = 18 where r 
O 

was, and we get ,
2 

= 27. In this way we 
obtain 

{r,J = 13, 18, 27, 24, 25, 14, ... 

Using an elegant result from Minkowski's Geometry of Numbers, Marsaglia demonstrated 
that the hyper~\anes would always o~~ur, no matter what the choices of the parameters were in 
the algonthm. For the past 20 years, Marsaglia sadly concluded, "such regularity might have 
produced bad, but recogmzed, results in Monte Carlo studies," as multiplicative congruential 
generators qmetly spewed regular hyperplane bands into models of baryons, bombs, and biology 3 

Even without the Lach-Marsaglia result, pseudo-randoms were in trouble. S.K. Zaremb~ 
for one, denounced the belief that there are a set of properties, exhibited by a test or set of tests' 
that smgle out stochastic processes. 4 Furthermore, he argued, the deterministic aspect of th~ 
pseudo-random generator made a mockery of the very category of a calculation of variance 
within a Monte Carlo. For these and other reasons, he turned to replace pseudo-randoms with 
a new kind of gen_erator, one known as a quasi-random generator. This shift I consider to be of 
~;e;::r epistemic import even than the shift from the true to the pseudo. The idea is this: instead 
ideal O mptmg m ever fanCier ways to capture some essential feature of the random, the very 
meta f random is taken down a notch, out of the exalted position as a privileged epistemic and 

_physical category. Do not look to secure the randomness of the pseudo-randoms say the 
!~~~~ts, look for the most efficient and powerful distribution of numbers to solve the problem­
·u t er d1stnbut10n that may demand. Indeed randomness is taken on the quasi scheme to be 

8 a certam degree f " I · " · o c umpmess ; and the quest10n becomes (quantitatively) not how to 
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achieve that specific amount and type of dumpiness, but_ rather the precise degree of dumpiness 

of sampling that is best at estimating (for example) an mtegral. . I . 20th ntu to 
"Local discrepancy" was a term introduced by Herman~ Weyl m the ear Y ce ry 

quantify the dumpiness of a distribution of pomts m space. It is defmed as 

g(x) = v(x)IN -xhx 3 • •• xd 

where dis the dimension of the unit cube. So for example in a three-dimensional unit cube _w: 
ima ine a set of N points distributed in some manner._ v(x) is the fraction of those N _pomt 
con!ined in a subvol ume defined by the origin and the pomts of mtersection of the perpendictars 
dro ed from x to the walls of the unit cube. g(x) therefore gives the deviation rom 
equl!stribution, and it can be postiv_e or negative. Many norms can be def med for g(x) mcludmg 

the extreme global discrepancy def med on a set of pmnts S as 

D(S) = sup {lg(x)I} for x in S 

where sup is the supremum of the set. The result - the crucial result of the new method of 
· d th t for D(S) less than that of randoms (less clumpmess than that 

quasi-ran oms - was a . h d 
characteristic of randomness) the approximation of an mtegral could be better t an ran om, 

and in some cases much better convergence of this error term 

E = iff (x)dx - 1/N Ikfi.x)I 

occurred not with 1/vN as in a random Monte Carlo, but rather as 1/N;_ and eve_n the 1/vN was 
an enormous improvement over the many regular quadrature schemes m play smce the time of 

Archimedes. . d F d · n end to the 
I take three philosophical lessons from this piece of bun_e ortran co e. a . 

epistemic and metaphysical dominance of randoms in simulations, a sharp blow to the picture 
of simulation as a literal re-presentation of a natural process, and fmally a challenge to our 

deeply held notions of typicality. In order: 

2. DESACRALIZATION OF THE RANDOM 

The great discovery and proliferation of computer-based Monte Carlos in the 1940s w~s :a; 

I
. t k E--,,. o faster than ordinary numencal quadrature. And some o , 

random samp mg 00 · h' d bt seemed 
suspect that virtue was laid at the door of the random. In a certam way, t is no ou h luck 
eason~ble Wouldn't it in some sense be best to close one's eyes (so to speak) and t en P . 

r ball from. an urn-wasn't randomness just the notion of studied abstinence from mterventton 

:hen sampling-justice blindfolded? And at the metaphysical levd wasn't there so~;~:: 
s ecial about a random process, something picked out as a natural kmd by nature itse _- ar 
tKe move from pseudo to quasi Monte Carlo is brusquely pragmatic and utterly deflat1~n ul;~ 
Randomness becomes no more than the choice of the sample support {x} yielding _a pa~ !\me 
value oftheclumpiness,D(S). But other schemes were also possible, and the quasi v1::nt ::king 
simply that D( S) would be chosen to speed the convergence of E to zero, even if it m F et the 
a value of D(S) that did not resemble the dumpiness of a truly random set. ~:~ing to 
epistemology of blind justice, forget the metaphysics of a special natural kind corresp 
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randomness. Efficiency of convergence matters, and D(S) would be found to suit the problem 
at hand. 

3. THE END OF SIMULATION AS RE-PRESENTATION 

For some years after the introduction of Monte Carlos, and even in the 1990s in certain cases, 
authors frequently emphasized the particular value of Monte Carlos when modelling processes 
were themselves thought to be random. In this sense the metaphysical correspondence between 
model and physical system was grounded in the circumstance that both were random. The 
model was a true Monte Carlo because both it and the phenomenon modelled were of the same 
natural kind. Such a view was problematic from early on-after all Ulam knew perfectly well 
that the Monte Carlo ccmld be used to track deterministic processes and even nonphysical 
mathematical formulae. And with the introduction of pseudo- randoms the "natural kind" 
correspondence ought to have faded that much more. Still, the view survived. Quasi Monte 
Carlos, on my reading, ought to eliminate that view for good-the choice of the support set 
{x) is made to minimize error fast; random {x) were useful for a few decades because they 
beat out the regular {x) of quadrature, and that is all. Now it was the turn of the randoms and 
their pseudo cousins to be left behind. 

4. THENEWTYPICALITY 

Finally, and this must here remain only a suggestive remark, it seems to me that we have the 
opportunity to examine the notion of typicality up close. When we choose the support set {x) 
in order to estimate an integral, we want above all to choose typical points. For a smooth 
periodic function it may well be that steady Archimedean footsteps from x = a to x = b are 
perfectly good. The problem comes when those steady footsteps fall in resonance with the 
behavior of the function- the nice regular sampling of sin2 8 from O to 10 n at intervals of n 
shows us that the integral of sine squared over that region is exactly zero. Bad job. Random 
selection aims to find typicality by avoiding all and any possible resonance between function 
and sample. But what we have learned from Monte Carlo is that even the random has a less 
than maximally efficient characteristic in extracting information from the integral: it is too 
bunched. It seems that typicality lies somewhere between Archimedes and Chaos, between, so 
to speak, the ideals of systematici ty and blindness. I conclude these comments with what amounts 

. · to a double twist. Some years ago, the authors of a book of random numbers started with a set 
· oftrne randoms and recoiled in horror as they found certain repetitive strings. To "improve" 
their set, they stuck in new digits, breaking up the unrandom look of the subsequence. 6 For 
years this circumstance has been regaled by statisticians as the height of perversity, illustrating 
how foolish it was to expect random numbers not to occasionally spew out a train of 7's. But 

joke is now reversed: breaking up the strings of7's might have been not a bad idea at all, as 
probably served to lower the global discrepancy and might well have improved the convergence 
Monte Carlos that made use of the doctored set. Now I don't recommend preparing the {x} 
· way, but it reveals to us the twisting path of a random philosophy. ' 
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1 See James 1987. 
2 See Lach 1963. 
3 See Marsaglia 1968. 
4 See Zaremba 1969. 
5 See Weyl 1916. 
6 See Lopes 1982. 

PETER GALISON 

NOTES 
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FORMAL REPRESENTATION AND THE SUBJECTIVE 
SIDE OF SCIENTIFIC REALISM 

Key words in my talk will be "way of representation", "way of notation", "symbolical 
formalization", and similar ones. These concepts, deserving many distinctions in 
principle, are grouped here on the basis of an elementary observation: experience and 
common sense testify indeed that, in all scientific disciplines, the perspective on certain 
problems and the possibility of solving them can be drastically modified by the 
introduction of a new way of representation. In this notion, besides high level 
formalizations, I shall consider therefore also the concrete embodiment in signs, figures, 
graphical devices, methods for writing, short cuts to symbolization, etc. A desordered 
list of examples may include: 

- figures in elementary geometry; 
- positional notation for numbers; 
- structure formulas in chemistry; 
- algebraic notation for calculus; 
- all kind of diagrams, from Descartes to Feynman; 
- Argand-Gauss plane for complex numbers; 
- Boolean algebra; 
- Symbolical Dynamics; 
- Turing machines; 
- nonstandard notation for infinitesimals, etc. 
Before going into the argument, some factual remarks are opportune. It is a truism 

that every problem, before being solved, must be thought. Besides making easier the 
solution of an existing problem, a new way of representation can open a whole range 
of previously unthinkable themes, independently of the particular argument in relation 
to which it has been introduced. As if in the notation there were much more than the 
inventors could suspect, previously invisible objects become visible. A standard example 
is the Argand-Gauss representation for complex numbers: as a visualization of the 
roots of an algebraic equation it seems almost trivial; but only through this representation, 
otherwise inconceivable arguments, such as the geometry of the Riemann surfaces, or 
the strange properties of the Zeta function, came out from pure virtuality. I don't insist 
on other classical examples, such as the positional notation for integers, or the habit of 
representing points through coordinates. Nowadays, as frequently pointed out, a great 
notational expansion is due to the programming languages: besides the brute 
computational power, the habit of looking at certain problems in terms of "steps of 
program" is going to change the point of view and the sensitivity about old arguments, 
and to introduce, in addition, a variety of new concepts. Chai tin and Kolmogorov ideas 
on the algorithmic complexity, for instance, and in general the rich development of 
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