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RANDOM PHILOSOPHY

1. INTRODUCTION

Somewhere, in any computer-based Monte Carlo simulation, is a line of code that
produces random numbers. With names like RANDU, RANDOM, RANF, or RNDM
the command is innocuous, a single, practically invisible step in a pmgraz’n that C(}aici
, rup to hundreds Of lines. Indeed, in the 1960s, the then-standard IBM 709 came oufiited
~with a random generator that was used around the world to produce simulations of
_ phenomena ranging from nuclear weapons and airplane wings to the impact of pions
‘on protons, from weather modelling to the analysis of number theory. In this b:ie;"
aper, I want to take out the philosophical magnifying glass and peer into the
epxstem@ogic&l and metaphysical changes at work behind the code.

_ The idea of a Monte Carlo is not complicated: by sampling randomly from a set of
points one can often approximate a volume. Throw darts at a circle inscribed in a
square gnd count the ratio of points in the circle to the number of hits inside the square
' cjmcludm g both those in the circle and those between the circle and the perimeter of the
kq»uare)‘ That ratio gives an approximation of the ratio of the circle area to that of the
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square (71/4). Similarly, one could take a function f{x) and rough outits integral £ f(x)dx
by _“throwing darts” at the rectangular region defined from x = @ to x = b and by an
interval f)f values of y = fx) from some point below the minimum of {(X) in [a,b] and
:, the'mammum of f{ix) in [a,b]. The ratio of hits below the curve f{x) to the nun;ber of

s not below the curve then approximates the ratio of the area £ f(x)dx to the area of
_the whole rgctanglef In other words one uses random points to {ill out a series of pairs
Jcounting as hit points such that y, < f(x,) and divides by the total number of pairs

d— this approXimates £ flx)dx.

. eneralizing from such considerations, the Monte Carlo can be used to sample-

s;n;ate the definite integral of a high-dimensional definite integral, a feature valuable

nall manner of probi§ms from hydrodynamic flow to the intricacies of thermonuclear

weapons design in which radiation transport, fusion, Compton effects, and a myriad of

I processes are at work. Strikingly—amazingly it has seemed 0 some—these

prggxg;nztzons could, with increasing numbers of sample points, converge to the “true”

lie of the definite integral at a rate far exceedin / ot

e of the ) g any previously-known

merical integration. P ’ method el

ti’l}?l\{{qnte Car?g Method, invented by mathematician Stanislaw Ulam and
ematician/physicist John von Neumann towards the end of World War I, was
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initially used to calculate the physics of fission weapons, especially the physics of neutrons in
the chain reaction. Such tasks gobbled random numbers at an alarming rate, and without a
ready and reliable supply, the process of launching trial “throws” such as the choice of (x, y,)
would come to a screeching halt. Generated from electrical noise, from the alpha decay of
radioactive minerals, and from the arrival times of cosmic rays, these “true randoms” were
compiled and published in books. Putting aside the conceptual difficulty of taking a published
hardbound volume of true random numbers off the shelf (how often could people begin their
series 947826 and still consider it random?) the pedigree of these digits was impeccable. “True
randoms”, physically-generated random numbers, could be thought of as truly standing for the
world: what could be more natural than using alpha-decay-produced randoms to model the
diffusion of neutrons inside a reactor core? Even when the process to be modelled was not
itself random—as in the evaluation of a finite integral —numbers were needed fast and plentifully.

To accelerate the early simulations to the point where they could be useful, von Neumann
introduced the notion of pseudo-random numbers. Instead of plucking digits off a list of the
true randoms, von Neumann proposed that a suitably chosen algorithm could generate a series
of digits that “for practical purposes” could serve more or less as well. For example, one could
take an eight-digit number (from a “true random” book, if one so wished) square it and excise
the middle eight digits. This new group became the seed for the next one: square the eight
digits and extract the central eight digits of the result. The computer itself could continue in this
way, ad libitum.

Now from the instant of von Neumann’s proposal, it was manifest to him that this sequence
of pseudo-randoms was not and could never be “random.” There are, after all, only 10%eight-
digit numbers. So in at most 10® repetitions of this game, an eight-digit sequence will repeat.
When it does, as sure as the sun rises in the east (more surely, actually) the algorithm will
repeat the exact sequence of numbers it got the first time around. So the sequence is not random —
much worse, it is an eternal, precisely repeating cycle. We are living in a state of sin, von
Neumann confessed to a colleague, when we use Monte Carlos. Still, the sequences and their
owners worked with a pragmatic confidence. If the sequence passed its tests all was fine. Or
was it?

To certify the pseudo-random generators, physicists and their mathematical colleagues
developed a series of tests. Were the digits equitably distributed—that is, were there roughly
the same number of 0s, 1’s, 2’s, ... and 9’s? Were there correlations between the # and (i+&)*
digit, where k was 1,2, 3, . . . up to some reasonable value of k? One author somewhat cynically
captured the philosophy of the idea this way: “if a pseudo-random number has passed a certain
number of tests, then it will pass the next one where the next one is the answer to our problem.”!
[t was, nonetheless, hoped that generators could be designed such that repetitions and correlations

could be excluded at least for a long-enough sequence for the simulation to run. “Tests of

randomness” would vouchsafe the “approximate randomness” of the series.

But as James’s wry motto made clear, it was not at all clear which tests, of the infinite
number that could be made, would actually be most useful as guardians of the true random
faith. Just how fragile the whole apparatus was became manifest in 1963 when high energy
physicist Joseph Lach became suspicious of the generators he and everyone else had been
using.2 Instead of asking after the equidistribution and k-correlations (correlations between the
iand (i+k)* term), Lach pursued the correlations of triplets on at least a fraction of their range.
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More specifically,
randoms between

he called up the Fortran number generator RANNO (which produced pseudo-
0 and 1.0), and had the computer sequentially hunt down the first number
; less than 0.1. He then programmed the computer to plot the next two numbers, desi gnated x
| and y,, as a point on an xy plot on his CRT. Then the computer hunted down th’e next numb;:;
J that was less than 0.1 and once again made a pair out of the next tw
: them (x,, y,) and popping them onio his screen. Continuing in this wa
to have fillgd its screen with (x, ¥,) equitably splashed over the screen
l TY set. It didn’t. Instead of “randomness” Lach saw sharp black diagonal lines— bands of no
E points at all. The message was as disturbing as it was clear: the black bands announced that
-RANNO,'havmg passed its other tests with flying colors, had failed the triplet correlation test
in the region 0 < z;< 0.1. Even if one cooked up a pseudo-random generator that did pass the
mplet test, the question lurked: would it do so for quadruplets, quintuplets, and hi gher mull)ti lets?
Vlrtually every computer in the world was producing manifestly unrandm’n randoms. The S(P;urcé
of the difficulty was, as George Marsaglia of Boeing Scientific Laboratories shc;wed in the
very nature of the so-called multiplicative congruential generators of the form ’

0 numbers, desi gnating
, the computer “ought”
like the gray static of a

ro=lar, , + bl (modm)

where m was 2 raised to the word size of the computer in use. For example for a 5-

bit word one
held mn = 32, and (for example) choosing arbitrarily @ = 21, b =1, 7,= 13, yields

7, = [21)(13) + 1] mod (32) = 274132,

which has a remainder of 18. Now set 7

obtain 1 = 18 where r, was, and we get r, = 27. In this way we

{r}=13,18,27,24,25, 14, . ..

Using an elegant result from Minkowski’s Geometry of Numbers, Marsaglia demonstrated
 thatthe hyperplanes would always occur, no matter what the choices of the parameters were in

the algorithm. “For the past 20 years,” Marsaglia sadly concluded, “such regularity might have
produced bao?, but recognized, results in Monte Carlo studies,” as multiplicative congruential
_ benerators quietly spewed regular hyperplane bands into models of baryons, bombs, and biology.?

Even without the Lach-Marsaglia result, pseudo-randoms were in trouble. S.K. Zaremba

tor oqe, denounced the belief that there are a set of properties, exhibited by a test or set of tests
_ that single out stochastic processes. ’

* Furthermore, he argued, the deterministi
) s ermnistic aspect of
_ bseudo-random generator made a e

mockery of the very category of a calculation of vari
e ariance
_ within a Monte Carlo. For these and other reasons, he turned to replace pseudo-randoms with

anew kmfi of generator, one known as a quasi-random generator. This shift I consider to be of
?:ater ep1§tergic import even than the shift from the true to the pseudo. The idea is this: instead
deztltgrfnrlzltrllgg in ever fancier ways to capture some essential feature of the random, the very
etaphysma;)rcn is taken down a notch, out of the exalted position as a privileged epistemic and
R ? e}tgl;)ry. Do nqt .look to secure the vran.dorr.mess of the pseudo-randoms say the
hatever)di ; .bor' e most efficient and powerful distribution of numbers to solve the problem—
. Istribution thzit may G‘lemand‘ Indeed randomness is taken on the quasi scheme to be
ertain degree of “clumpiness”; and the question becomes (quantitatively) not how to
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achieve that specific amount and type of clumpiness, but rather the precise degree of clumpiness

of sampling that is best at estimating (for example) an integral.
“]_ocal discrepancy” was a lerm introduced by Hermann Weyl in the early 20™ century 10

quantify the clumpiness of a distribution of points in space.® It is defined as
g(x) = vO)/N =X X X5 Xy

where d is the dimension of the unit cube. So for example ina three-dimensional unit cube we
imagine a set of N points distributed in some manner. v(x) is the fraction of those N points
contained in a subvolume defined by the origin and the points of intersection of the perpendiculars
dropped from x to the walls of the unit cube. g(x) therefore gives the deviation from
equidistribution, and it can be postive or negative. Many norms can be defined for g(x) including

the extreme global discrepancy defined on a set of points 5 as
D(S) = sup {|g()|} for xin§

where sup is the supremum of the set. The result — the crucial result of the new method of
quasi-randoms — was that for D(S) less than that of randoms (less clumpiness than that
characteristic of randomness) the approximation of an integral could be better than random,
and in some cases much better convergence of this error term

E =|[[f(x)dx - UN X, flx)|

occurred not with 1/VN as in a random Monte C
an enormous improvement over the many regu
Archimedes.

I take three philosophic
epistemic and metaphysical dominance O
of simulation as a literal re-presentation o
deeply held notions of typicality. In order:

>, DESACRALIZATION OF THE RANDOM

The great discovery and proliferation of computer-

random sampling took E —> O
suspect, that virtue was laid at the door of the random. Ina certain way,

reasonable. Wouldn’t it in some sense be best to close one’s eyes (o to spea
a ball from an urn— wasn’t randomness ]

special about a random process, something pick
the move from pseudo to quasi Monte Carlo is brusquely pragmati
Randomness becomes no more than the choice of the sample support {x } yie
value of the clumpiness, D(S). But other schemes were also possib
simply that D(S) would be chosen to speed the convergence of E't
a value of D(S) that did not resemble
epistemology of blind justice, forget the metaphysics of a special natura

arlo, but rather as 1/N; and even the 1/VN was
lar quadrature schemes in play since the time of

al lessons from this piece of buried Fortran code: an end to the
f randoms in simulations, a sharp blow to the picture
f a natural process, and finally a challenge to our

based Monte Carlos in the 1940s was that

faster than ordinary numerical quadrature. And somehow, |
this no doubt seemed

k) and then pluck

ust the notion of studied abstinence from intervention
when sampling— Jjustice blindfolded? And at the metaphysical level wasn’t there something
ed out as a natural kind by nature itself? Here
ic and utterly deflationary.
lding & particular
le, and the quasi view became
o zero, even if it meant taking

the clumpiness of a truly random set. Forget thé
| kind corresponding @
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randomness. Efficiency of
random y of convergence matters, and D(5) would be found to suit the problem

3. THE END OF SIMULATION AS RE-PRESENTATION

|
|
E:
|
|

For some years after the introduction of Monte Carlos, and even in the 1990s in certai
z;xthé)trlf f reql;entlyhemphasized the particular value of Monte Carlos when modelling plrzs:::ess)
ere themselves thought to be random. In this sense the meta ic
model and physical system was grounded in the circumZtaitzsi}clzlt fg{;sgz?: iz;zbetvv;;n
model was a true Monte Carlo because both it and the phenomenon modelled were of t(;lm. :
?}?t:lrtellll }th/;d. tSuiﬁ al view was problematic from early on—after all Ulam knew perfectfysifnellel:
at the Monte Carlo could be used to track deterministic i
mathematical formulae. And with the introduction cl)lfn;tsl;ugi)o—cfsizsorir;dtlze‘?n:to nplhiglca’l’
correspondence ought to have faded that much more. Still, the view survived QHI;YE} M .
Carlqs, on my regding, ought to eliminate that view for good—the choice of .the suSl 1;) o
{x}is made to minimize error fast; random {xi} were useful for a few decades becappO thset
begt out the regular {x } of quadrature, and that is all. Now it was the t f th oms and
their pseudo cousins to be left behind. ot the randoms and

4. THENEW TYPICALITY

Finally, apd this must here remain only a suggestive remark, it seems to me that we h, hy
Qpportunlty to §xamine the notion of typicality up close. When we choose the support avte' o
in Qrd;r to espmate an integral, we want above all to choose typical points I%)r oo
periodic function it may well be that steady Archimedean footsteps from x - ato ; imbo o
gz;f:‘itg gfo;)ﬁi. ;Fhe tproblelﬁq comes when those steady footsteps fall in res:)nance v;ith ?é:
of the function— the nice regular sampling of sin’6 1

‘shows. us that the i'ntegral of sine squared overI;hatg region is gioargtl(; tzoerlc? T};:(ti grgsr?;sé N
Z(;l;ctlon 'iums to find typicality by avoiding all and any possible resonance betweer; functioTl
’th&ns;n;;()i Ien. a1131ut ev;?aF we have lear-nf?d from Mopte Carlo is that even the random has a [ess
e y efficient f:hafactgnstlc in extracting information from the integral: it is too
; :k it seems that typicality lies somewhere between Archimedes and Chaos, between, so
- Zpgoui)tlhe 1d§als of systematicity and blindness. I conclude these comments with v,vhat amOL;nts
| ;dtov;/rllsst.a igme yleards ago, the authors of a book of random numbers started with a set
o e recoile d*n.horror as, they found certain repetitive strings. To “improve”
- thi,s Cirzumsta in rﬁewb igits, breaking up the. unrandom look of the subsequence.® For
s tnce as been regaled by statisticians as the height of perversity, illustrating
L reveos egpgct rapdom numbgrs not to occasionally spew out a train of 7’s. But
by s togoe ,‘ rheakmg up Fhe strings of 7’s .mi ght have been not a bad idea at all, as
el W Zrt ¢ global discrepancy and might well have improved the convergence
e made use of the .doctored set. Now I don’t recommend preparing the {x}

¥; but it reveals to us the twisting path of a random philosophy. 1
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NOTES

See James 1987.
See Lach 1963.

See Marsaglia 1968.
See Zaremba 1969
See Weyl 1916.

See Lopes 1982.
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MARIO CASAs s

FORMAL REPRESENTATION AND THE SUBJECTIVE
SIDE OF SCIENTIFIC REALISM

27

Key words in my talk will be “way of representation”, “way of notation”, “symbolical
formalization”, and similar ones. These concepts, deserving many distinctions in
principle, are grouped here on the basis of an elementary observation: experience and
common sense testify indeed that, in all scientific disciplines, the perspective on certain
problems and the possibility of solving them can be drastically modified by the
introduction of a new way of representation. In this notion, besides high level
formalizations, I shall consider therefore also the concrete embodiment in signs, figures,
graphical devices, methods for writing, short cuts to symbolization, etc. A desordered
list of examples may include:

- figures in elementary geometry;

- positional notation for numbers;

- structure formulas in chemistry;

- algebraic notation for calculus;

- all kind of diagrams, from Descartes to Feynman;

- Argand-Gauss plane for complex numbers;

- Boolean algebra;

- Symbolical Dynamics;

- Turing machines;

- nonstandard notation for infinitesimals, etc.

Before going into the argument, some factual remarks are opportune. It is a truism
that every problem, before being solved, must be thought. Besides making easier the
solution of an existing problem, a new way of representation can open a whole range
of previously unthinkable themes, independently of the particular argument in relation
to which it has been introduced. As if in the notation there were much more than the
mventors could suspect, previously invisible objects become visible. A standard example
is the Argand-Gauss representation for complex numbers: as a visualization of the
roots of an algebraic equation it seems almost trivial; but only through this representation,
otherwise inconceivable arguments, such as the geometry of the Riemann surfaces, or
the strange properties of the Zeta function, came out from pure virtuality. I don’t insist
on other classical examples, such as the positional notation for integers, or the habit of
Irepresenting points through coordinates. Nowadays, as frequently pointed out, a great
notational expansion is due to the programming languages: besides the brute
Computational power, the habit of looking at certain problems in terms of “steps of
Program” is going to change the point of view and the sensitivity about old arguments,
and to introduce, in addition, a variety of new concepts. Chaitin and Kolmogorov ideas
on the algorithmic complexity, for instance, and in general the rich development of
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