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Abstract The Event Horizon Telescope (EHT) Collaboration recently published the
first images of the supermassive black holes in the cores of the Messier 87 and Milky
Way galaxies. These observations have provided a new means to study supermassive
black holes and probe physical processes occurring in the strong-field regime. We re-
view the prospects of future observations and theoretical studies of supermassive black
hole systems with the next-generation Event Horizon Telescope (ngEHT), which will
greatly enhance the capabilities of the existing EHT array. These enhancements will
open up several previously inaccessible avenues of investigation, thereby providing im-
portant new insights into the properties of supermassive black holes and their envi-
ronments. This review describes the current state of knowledge for five key science
cases, summarising the unique challenges and opportunities for fundamental physics
investigations that the ngEHT will enable.
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1 Introduction

Recent very-long-baseline interferometry (VLBI) observations of supermassive black
holes (SMBHs) have opened a new path to observe and study strong field gravity. Black
holes (BHs) lie at the edge of our understanding of the fundamental laws of physics.
The mechanisms governing their genesis and evolution are poorly understood, but there
is substantial evidence for the pivotal role they play in star formation, galactic evolu-
tion, cosmic energy exchange and transport, accretion and outflows, and the generation
of ultra-high-energy (UHE) emissions. From a fundamental physics perspective, BHs
hold a tremendous potential for advancing scientific knowledge. They are considered
central to possible energy extraction mechanisms from vacuum of their surrounding
deep gravitational potentials, wherein gravitational lensing can be so strong that the
trajectories of light rays are “closed”. The Einstein field equations (EFEs) break down
in BH interiors, raising the prospect that the geometry close to the event horizon may
carry observable imprints which will prove crucial in the development of a more com-
prehensive description of the gravitational interaction. Such developments will require
conclusive experimental evidence for the existence of astrophysical BH event horizons
and for a detailed mapping of their geometry. The last decade has been vital for the
field. In 2015 the first direct detection of gravitational waves (GWs) opened up the
remarkable new tool of GW astronomy to study compact objects. GWs have been
successfully used to probe BHs and neutron stars in the highly dynamical regime.

The achievement of hitherto unprecedented resolving power in traditional obser-
vational astronomy using optical, infrared, and radio VLBI over the past few decades
has led to significant progress in the study of BH systems. Of particular importance in
the context of this review are the multidecadal observations of the orbital motions of
S-stars in the Galactic Centre (GC) by the Keck telescope (Do et al., 2019a) and the
VLTI (Abuter et al., 2022). These observations constrained the central mass of the GC
to be ∼ 4 × 106M⊙ (see Table 2), providing compelling evidence for the existence of
a supermassive compact object, presumably a SMBH. Parallel advances in mm wave-
length VLBI during these years provided a means to spatially resolve the immediate
environment of the compact object in the GC at frequencies where the surrounding
hot plasma becomes optically thin. This led to the discovery of horizon-scale features
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of the GC SMBH Sagittarius A*, hereafter SgrA∗, (Doeleman et al., 2008), and sim-
ilar scale structures around the M87 SMBH, hereafter M87* (Doeleman et al., 2012).
Subsequent growth of mm-VLBI arrays led to the Event Horizon Telescope (EHT)
Collaboration (EHTC) producing the first ever images of these two SMBHs (EHT Col-
laboration, 2019a, 2022a). These results present a bright ring feature in both SMBH
images, demonstrating the persistence of this feature across a scale of more than three
orders of magnitude in mass (see Figure 1), as anticipated from the scale-invariance
of general relativity (GR). Both images also demonstrate manifestly similar image
morphologies, with pronounced central brightness depressions and ring diameters con-
sistent with the predictions of GR. These recent breakthroughs are complementary to
GW observations, probing spacetime geometries which can be understood as “static”
(i.e., effectively stationary) by detecting radiation produced by matter in the vicinity
of the BH’s purported event horizon.

In this review we assess the potential of a next-generation Event Horizon Telescope
(ngEHT) to extract information on foundational issues related to BHs and near-horizon
physics, presenting an overview of the most promising future prospects for studies of
BHs and strong field gravity in the next decade. The ngEHT program is expected
to transform our understanding of SMBH sources via substantial improvements in
angular resolution, image dynamic range, multi-wavelength capabilities, and long-term
monitoring, as well as rendering several new SMBH systems accessible to event horizon-
scale study. The structure of the persistent ring feature in EHT images of SgrA∗and
M87* is currently not sufficiently resolved to unambiguously confirm the presence of
a “photon ring”1. The ngEHT will use measurements of the emission near SMBHs to
probe their spacetime geometry, measuring the BH mass and spin, as well as enabling
tests of the no-hair theorem of astrophysical BHs.

1.1 ngEHT: array architecture and vision

The current EHT results were all achieved using an observing campaign in 2017 that
included 8 telescopes at 6 geographic sites. In an interferometric array such as the EHT,
each baseline joining a pair of telescopes samples a single Fourier component of the sky
image. EHT observations of Sgr A∗ had 15 intersite baselines, while EHT observations
of M87∗ had 10 intersite baselines (the South Pole Telescope cannot observe M87∗).
The EHT observations recorded a single 4GHz band, centered on 228GHz. Since the
initial EHT observing campaign, the array has been expanded to include 3 additional
sites, has doubled the recorded bandwidth, and and has recently added the ability to
observe at 345 GHz (Crew et al., 2023).

The ngEHT is a project that is designing an array that would substantially enhance
the observational capabilities of the EHT (Doeleman et al., 2019). Over two phases of
deployment, the ngEHT will add up to ∼10 additional sites worldwide by ∼2030 (see
Figure 2). The ngEHT will also include three simultaneous observing bands at 86,
230, and 345GHz. Apart from providing spectral information, this configuration will
allow substantially improved phase coherence at high frequencies because the dominant
sources of ngEHT phase errors are non-dispersive (see, e.g., Issaoun et al., 2023; Rioja
et al., 2023). Together, these improvements will augment the angular resolution of

1 In the absence of attenuating material media, gravitational field theory predicts a formally
infinite hierarchy of successively thinner and fainter photon rings: see Sec. 2.
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M87* April 11

Sgr A* April 7, 2017

50µas º 10µg

0 2 4 6 8 10 12 14
Brightness Temperature (109 K)

Sgr A* April 7

Fig. 1 EHTC images of M87* (left) and SgrA∗ (right). The central solid blue circles show
the largest possible diameter (in GR) of each BH’s event horizon, i.e., the Schwarzschild value
of 4 rg, where rg is the BH gravitational radius (see Sec. 2). The size of the event horizon
in the observed image would appear slightly larger than the solid blue circles, due to grav-
itational lensing. Note that the event horizons fit within the central dark regions of both
images (the central brightness depression). Pairs of dashed blue circles delineate the estimated
diameter range of the bright ring from image domain analysis of M87* (42 ± 3 µas) and
SgrA∗ (51.8 ± 2.3 µas). These ranges are consistent with the prediction of the Schwarzschild
BH shadow diameter (2

√
27 rg). The white circles in the lower right of both panels show the

20 µas FWHM circular Gaussian beam (EHT 2017). See EHT Collaboration (2019a) and EHT
Collaboration (2022a) for further information. Figure reproduced from Younsi (2024).

existing site
planned site
ngEHT Phase 1
ngEHT Phase 2

existing site
planned site
ngEHT Phase 1
ngEHT Phase 2

Fig. 2 Vision for the ngEHT array. Current EHT sites are shown in white, candidate ngEHT
Phase 1 sites are blue, and candidate ngEHT Phase 2 sites are green. In addition, yellow
markers show four additional sites that are planned to come online over the next five years:
the 37 m Haystack Telescope (HAY; Kauffmann et al., 2023), the 15 m Africa Millimetre
Telescope (AMT; Backes et al., 2016), the Large Latin American Millimeter Array (LLA;
Romero, 2020), and the Yonsei Radio Observatory of the Korea VLBI Network (KVN-YS;
Asada et al., 2017). For additional details on the ngEHT array, see ngEHT Array. Figure
reproduced from ngEHT Science.
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Fig. 3 Observing frequencies and imaging angular resolutions for current and next generation
facilities. The EHT and ngEHT have significantly finer imaging resolution than any other
telescope. The ngEHT will significantly expand the frequency coverage of the EHT and will
provide access to larger angular scales. Figure reproduced from ngEHT Science.

current EHT images by approximately 50% and will increase the angular scales that
the array can image by an order of magnitude (see Figure 3). They will also increase the
dynamic range of BH images by 1–2 orders of magnitude and will ultimately support
dense observations year-round, significantly improving the current temporal coverage
of EHT observations (∼1week per year). For a summary of the ngEHT array, see
Doeleman et al. (2023, hereafter ngEHT Array). For a summary of the complete set of
ngEHT science goals, see Johnson et al. (2023, hereafter ngEHT Science).

1.2 Outline and notation

This review article is organised as follows. In Sec. 2 we review the status and prospects
of ngEHT studies of the photon ring to provide evidence of strong field gravitational
lensing by SMBHs and yield novel tests of GR. Next, in Sec. 3 we present an overview
of ngEHT observables for measuring SMBH mass and spin, followed by an overview
of other studies which can complement those the ngEHT will perform. In Sec. 4 we
discuss the capability of the ngEHT to search for ultralight bosonic fields below the eV
scale, together with the implications of these studies for the structure of the central
compact object and its surrounding plasma. Section 5 presents an overview of tests of
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GR and the Kerr hypothesis with the ngEHT. Different physical scenarios in beyond-
GR theories are classified, with their implications for testable violations of the Kerr
hypothesis discussed, together with a summary of key science cases for testing features
of compact objects in and beyond GR. Finally, in Sec. 6 we discuss the prospects of
studies of SMBH binaries with the ngEHT. Candidate sources are identified and the
challenges and prospects of probing SMBH binaries with the ngEHT are explored.

In this review we venture to provide a framework for the exploration and develop-
ment of these exciting new prospects. Studies such as those discussed in this review will
consolidate our understanding of the different ways ngEHT-driven VLBI observations
can probe the properties of SMBHs and enable new tests of fundamental physics.

The acronyms used in this review are summarised in Table 1. We adopt the ge-
ometrical unit convention in which G = c = 1, and unless otherwise stated assume
the metric signature to be [−,+,+,+]. When specifying vectors and tensors, Greek
indices (e.g., µ, ν) span (0, 1, 2, 3) and Latin indices (e.g., i, j) span (1, 2, 3), where
0 denotes the temporal component and (1, 2, 3) denote spatial components.

1.2.1 List of acronyms used in this review

AGN Active Galactic Nucleus
Athena Advanced Telescope for High ENergy Astrophysics
BAL Broad absorption line
BH Black hole
BBH Binary black hole
CFT Conformal field theory
CMB Cosmic microwave background
CCTP Conjugate closure trace product
CTA Cherenkov Telescope Array
DM Dark matter
DAGN Dual AGN
ECO Exotic compact object
EdGB Einstein dilaton Gauss Bonnet
EdM Einstein dilaton Maxwell
EFEs Einstein field equations
EFT Effective field theory
EHT Event Horizon Telescope
EHTC Event Horizon Telescope Collaboration
EMRI Extreme mass-ratio inspiral
EVPA Electric vector position angle
FFE Force-Free Electrodynamics
FWHM Full width half maximum
GC Galactic Center
GR General relativity
GRMHD General-relativistic magnetohydrodynamics
GRRT General-relativistic radiative transfer
GW Gravitational wave
GWB Gravitational wave background
HD Hellings & Downs
IMBH Intermediate-mass black hole
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IR Infrared
ISCO Innermost stable circular orbit
JWST James Webb Space Telescope
LIGO Laser Interferometer Gravitational-Wave Observatory
LISA Laser Interferometer Space Antenna
LLAGN Low luminosity AGN
LT Lense-Thirring
M87 Messier 87
MAD Magnetically arrested disk
MCMC Markov Chain Monte Carlo
MRI Magnetorotational instability
ngEHT Next-Generation Event Horizon Telescope
NGC New General Catalogue
ngVLA Next-Generation Very Large Array
NHEK Near horizon extremal Kerr
NIR Near Infrared
PN Post-Newtonian
PTA Pulsar Timing Array
QPO Quasi-periodic oscillation
RIAF Radiatively inefficient accretion flow
SANE Standard and normal evolution
SCO Stellar compact object
SDSS Sloan Digital Sky Survey
SEP Strong equivalence principle
SFPR Source Frequency Phase Referencing
Sgr A* Sagittarius A*
SKA Square kilometer array
SMBH Supermassive black hole
SMBHB Supermassive black hole binary
SNR Signal-to-noise ratio
UHE Very high energy
VHE Very high energy
VLA Very Large Array
VLBI Very-Long-Baseline Interferometry
VLBA Very Long Baseline Array
VLTI Very Large Telescope Interferometer
SWG Science working group

1.3 Author contributions

The ngEHT Fundamental Physics Science Working Group (SWG) was coordinated by
Vitor Cardoso and Ziri Younsi. The topic “Studies of the photon Ring” was led
by Shahar Hadar and Daniel Palumbo. The topic “Measuring black hole mass
and spin” was led by Dimitry Ayzenberg, Lijing Shao and Huan Yang. The
topic “Searching for ultralight fields with the ngEHT” was led by Richard Brito
and Yifan Chen. The topic “Tests of GR and the Kerr hypothesis with the ngEHT”
was led by Astrid Eichhorn and Aaron Held. The topic “Exploring binary black
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holes with the ngEHT” was led by Silke Britzen and Roman Gold. All authors
contributed to the writing of the document.
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2 Studies of the photon ring

There are three classical tests of GR: the precession of the planet Mercury, the deflection
of light by the Sun and the gravitational redshift of light. The first observation of light
deflection by the Sun was measured by Arthur Eddington and his team during the 1919
eclipse (Crispino and Kennefick, 2019; Will, 2014). They recorded a deflection angle
of δ ∼ 1.7 arcseconds. This is consistent with the weak field prediction of GR where,
for a small dimensionless compactness rg/r0, the angle is given by δ ≈ 4 rg/r0. Here
r0 is the perihelion of the light ray’s trajectory and rg := GM/c2 is the gravitational
radius of the deflector, wherein M is the mass of the Sun, G is Newton’s gravitational
constant and c is the speed of light.

In the strong field regime, near extremely compact objects such as BHs, the very
same principles of GR predict that the deflection angle should become unbounded
at the so-called photon shell : the spacetime region, close to the BH event horizon,
where light rays may orbit indefinitely at fixed (Boyer-Lindquist) radius (see Perlick,
2004, for a review and historical account). The Schwarzschild radius of a BH is defined
as rS := 2GM/c2 ≡ 2 rg and corresponds to the radius of the event horizon of a
Schwarzschild BH. For the Schwarzschild metric, the photon shell is located at 3 rg,
i.e., at a coordinate radius of only 0.5 rS away from the event horizon.

The light rays of the photon shell are unstable; when they are slightly perturbed,
time evolution drives them away from the shell, and eventually they either reach asymp-
totic infinity or fall into the BH. Nevertheless, in this process they experience extreme
lensing, with order-unity deflection angles (in radians), and carry an imprint of the
spacetime geometry at the photon shell region. The extreme gravitational lensing close
to the photon shell is accompanied by an extreme “Shapiro-like” delay, directly responsi-
ble for the late-time appearance of collapsing spacetimes or of transient electromagnetic
phenomena in the BH vicinity (Podurets, 1965; Ames and Thorne, 1968; Cardoso et al.,
2021a; Ferrari and Mashhoon, 1984; Cardoso et al., 2009).

The detection of extreme gravitational lensing may therefore provide new ways to
observe gravitational phenomena in the strong-field regime. The goal of this Chapter
is to discuss how EHT and ngEHT observations can be used to provide evidence and
quantification of the strong deflection of light by BHs.

2.1 The photon shell and ring

Geodesic motion in the Kerr spacetime has been studied since the pioneering work of
Carter (1968) and numerous papers thereafter (see, e.g., Walker and Penrose, 1970;
Chandrasekhar, 1983; Hackmann et al., 2010). In this section we discuss the unstably
bound null geodesics of Kerr, which are of central importance for the interpretation of
BH images. These are null-geodesic orbits with fixed Boyer-Lindquist radial coordinate
(Boyer and Lindquist, 1967). They are pivotal for astrophysical observations of BHs
since they define the universal features in the observational appearance of the BH, as
will be described below.

In what follows we adopt Boyer-Lindquist coordinates xµ = (t, r, θ, ϕ) and de-
note the photon 4-momentum by pµ. We denote the BH mass by M and its angular
momentum by J . The BH spin parameter is defined as a := J/M , and the dimen-
sionless spin parameter is defined as a∗ := J/M2 ≡ a/M . Null geodesics (photons)
in the Kerr spacetime are specified by two constants of motion: the energy-scaled
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angular momentum component parallel to the axis of symmetry λ = L/E, where
L ≡ pϕ and E ≡ −pt, and the energy-scaled Carter constant η = Q/E2, where
Q = p2θ +

(
p2ϕ csc

2 θ − a2p2t
)
cos2 θ.

The energy itself only determines the frequency of the photon moving along the
geodesic and not its trajectory. The existence of a quadratic Killing tensor and the
resulting separability of the Hamilton-Jacobi equation for the Kerr spacetime give rise
to the Carter separation constant, Q, which characterizes the polar motion. Together
with the null condition pµpµ = 0, the geodesic motion may be reduced to a problem of
quadratures, i.e., expressed as a system of four coupled first-order ordinary differential
equations for the geodesic path.

We now focus on a specific, special subset of the Kerr BH’s null geodesics which
orbit at a fixed Boyer-Linquist radius r = r̃. These orbits play a central role in this
section and they are interchangeably referred to as spherical/bound/critical photon
orbits. As mentioned above, the radial equation is cast in the form of one-dimensional
radial motion in an effective potential, Vr(r). Solving Vr(r̃) = V ′

r (r̃) = 0 determines a
one-parameter family of critical parameters λ(r̃) and η(r̃) for which spherical photon
orbits exist. These bound photon orbits comprise the photon shell, and are labeled by
their radius r̃ (Darwin, 1959; Bardeen et al., 1972; Luminet, 1979; Teo, 2003; Gralla
et al., 2019; Johnson et al., 2020). The fact that V ′′

r (r̃) < 0 for all these orbits shows
that they are unstable. The impact parameters λ and η may be thought of as coor-
dinates on an observer’s screen, and the above-described set {λ(r̃), η(r̃)} defines the
critical curve, with r̃ a parameter along it.

The spherical photon orbits, which constitute the photon shell, exist in the range
r̃− < r̃ < r̃+, where the outermost (retrograde, +) and innermost (prograde, −)
equatorial circular photon orbits are located at the radii:

r̃± = 2M

{
1 + cos

[
2

3
arccos (±|a∗|)

]}
. (1)

For a∗ = 0, these two radii coincide and there is a unique spherical photon orbit radius
which defines the so-called Schwarzschild photon sphere. Note that in the Schwarzschild
geometry geodesics are planar, as a result of spherical symmetry.

Near-critical null geodesics are governed by the properties of the photon shell. Es-
sentially, they are controlled by a triplet of critical parameters: the Lyapunov exponent
γ(r̃) (Johnson et al., 2020), describing the instability rate of the orbits, and the tem-
poral and azimuthal periods, τ(r̃), δ(r̃), respectively (Teo, 2003; Gralla and Lupsasca,
2020a,b).

In an optically thin setting, each light source in the vicinity of the BH will have
multiple (mathematically, an infinite number of) images on an observer’s screen. The
different images may be indexed by the number of half-orbits executed by the photons
that create them, where the half-orbit number n is the number of polar turning points
(i.e., in the motion in θ) the photon undergoes between its emission and observation.
The weakly-lensed direct image, n = 0, is therefore accompanied by extremely lensed
subrings n = 1, 2, . . ., composed of photons that orbited the BH before detection.
The subring images are increasingly thin, and appear exponentially close to the critical
curve, both as ∼ e−γn. More precisely, if (ρ, φ) are polar coordinates on the observer
screen and ⟨In⟩ is the nth subring’s contribution to the time-averaged specific intensity,
the subrings obey the asymptotic relation (Johnson et al., 2020):

⟨In+1(ρ̃+ δρ, φ)⟩ = ⟨In(ρ̃+ eγδρ, φ)⟩ , (2)
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Fig. 4 Left: near-critical null geodesics emanating from a flare (orange sphere) in an optically
thin equatorial emission disk around a Kerr BH with a∗ = 0.94. The blue light ray has half-
orbit number n = 1, while the green ray has n = 2. Right: image of the disk as would be seen
by an infinite-resolution distant observer at an inclination of 17◦. Strongly lensed light rays,
which undergo multiple half-orbits, appear on the observer screen close to the “critical curve”,
displaying enhanced brightness, and compose the photon ring. Correlated images of the same
spacetime event (e.g., the flare) appear at different angles and times along the ring (blue and
green dots on the right image). Figure from Hadar et al. (2021).

where ρ̃(φ) parameterizes the critical curve on the screen, δρ is a small deviation
from it, and we assume that, on average, the source is axisymmetric and reflection-
symmetric with respect to the equatorial plane. Practically, for most configurations the
first indirect image, n = 1, coarsely straddles the critical curve, while the n ≥ 2 very
closely follows it.

The photon ring (Bardeen, 1973; Luminet, 1979; Johannsen and Psaltis, 2010;
Gralla et al., 2019; Johnson et al., 2020) is the sum of the n ≥ 1 subrings. Due to the
exponential demagnification of subsequent rings, the majority of the photon ring flux
in a general viewing geometry will lie in the n = 1 subring. For time-averaged images
(or equivalently, axisymmetric flows), only the Lyapunov exponent, which describes
the demagnification between subsequent winding numbers, is necessary to describe the
relative structure of each photon ring. In other words, for a flow viewed over many
realizations of the turbulence, the spatial structures that emerge on average are all
simply related to the Lyapunov exponent. For the temporal and transient observables
discussed in Sec. 2.2.3, τ and δ also come into play.

The photon ring, in particular its thickness, has not yet been resolved by the EHT.
The ngEHT is expected to sample the n = 1 with its longest baselines, especially at
345 GHz. This could provide a unique probe of spacetime, given low enough optical
and Faraday depths (see, e.g. Himwich et al., 2020; Mościbrodzka et al., 2021; Ricarte
et al., 2021; Palumbo and Wong, 2022). The relation between the n = 0 and n = 1 sub-
images is a general probe of the spacetime, and its measurement could provide some
constraining power on BH parameters, as well as enable novel tests of GR (Wielgus,
2021; Broderick et al., 2022; Staelens et al., 2023).

Below, we consider the science cases enabled by detection of the photon ring,
namely: demonstrating the existence of the photon ring, static model fitting of the
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Fig. 5 Left: n = 0 and n = 1 images from a MAD GRMHD simulation viewed with parameters
appropriate for M87* at 230 GHz. Right: visibility response along the u and v axes of the
decomposed and full image. At the baseline lengths accessible to the ngEHT, the n = 0 and
n = 1 image have comparable correlated flux density.

n = 1 ring, and dynamical tracking of features of the space time. Both spatial and
temporal sensitivity to photons in the n = 1 ring offer opportunities for sensitive
measurements of mass and spin, as will be further described in Sec. 3.

2.2 Science Cases

2.2.1 Demonstrating existence of the n = 1 ring

The presence of a photon ring arises as a qualitative consequence of extreme com-
pactness of the central compact object and the existence of a photon shell. Hence, its
qualitative detection alone constitutes an important confirmation of our understanding
of strong gravity in a broader sense than precision-testing GR or constraining alterna-
tive spacetime metrics. Equipped with 345 GHz detectors, the ngEHT could approach
a 13 Gλ baseline length. At this baseline length a hint of n = 1 photon ring presence
could be detected simply as a systematic excess of long baseline flux density with re-
spect to the values measured on shorter baselines, informing us about additional power
at high spatial frequencies. However, robust, physically-informed probes are necessary
to make strong statements about photon ring existence. We outline a few potential
approaches here.

As shown in Johnson et al. (2020) and reproduced here in Figure 5, the n = 1
ring in realistic simulations of M87∗ will be detectable above the 10 mJy thermal noise
level of typical EHT baselines (EHT Collaboration, 2019b). However, we observe that
teasing out the n = 1 structure in the general case of turbulent general-relativistic
magnetohydrodynamics (GRMHD) will involve distinguishing two emission sources
entering at comparable correlated flux density in VLBI measurements. Though the n =
1 ring will not be strictly resolved, data analysis methods that permit super-resolved
structure (geometric and emissivity modeling, as well as some imaging methods) may
enable measurements of photon ring properties. The main challenge for the ngEHT
will be demonstrating that the data prefer the presence of a thin ring.

Fortunately, the BH spacetime is stationary relative to the evolving accretion flow,
meaning that large volumes of data taken over many realizations of the turbulent
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Fig. 6 Polarized interferometric indication of the SgrA∗ photon ring. Left: a MAD GRMHD
simulation of SgrA∗with Rlow = 1, Rhigh = 80, and viewed at 30◦, after corruption by
interstellar scattering. Middle panels: divergence-free B-mode polarization defined relative to
the image center, showing the sign flip between the direct and indirect image. Right panel:
the phase of the polarimetric spiral quotient defined in Palumbo et al. (2023) after averaging
over 24 hours of the simulation movie at left, which reveals the presence of the photon ring
B-mode reversal even without phase information constraining the image center. This detection
mechanism is only possible with long-baseline 345 GHz detections which just barely reach the
indirect image-dominated regime.

plasma should indicate a single value of BH parameters like mass and spin. Nonetheless,
demonstrating that any detailed structure consistent with the photon ring is present
is challenging: of all the improvements to the ngEHT, by far the most important in
realizing this goal is the expansion to 345 GHz with associated frequency phase transfer
from simultaneous observations at 86 GHz (for M87∗) or 230 GHz (for Sgr A∗). Higher
frequency means longer baselines and thus sharper angular resolution. Moreover, at
higher frequencies the characteristic optical and Faraday depths in the accretion flow
decrease, tending to favor larger fractions of the observed flux in the photon ring where
the optical path length is longer (see, e.g., EHT Collaboration, 2021b).

One promising application of the ngEHT’s novel 345 GHz coverage is a polarimetric
test for the existence of the photon ring. As discussed in greater detail in Sec. 3.2.4,
in the low-inclination, low-spin limit, the photon ring exhibits a simple negation of the
divergence-free “B-mode” of polarization. Recent studies of favored models for M87∗

and Sgr A* suggest that a gain-insensitive polarized interferometric observable, β̆2,
can detect this reversal, with the first hints of the Sgr A∗ photon ring available on the
longest 345 GHz baselines of the ngEHT (Palumbo et al., 2023). This observable, which
extends the analysis of rotationally symmetric polarization described in Palumbo et al.
(2020) and used in EHT Collaboration (2021b), effectively contains the same infor-
mation as the interferometric fractional polarization m̆ expressed in a rotating basis.
Figure 6 demonstrates that, for magnetically arrested disk (MAD) flows of modest
inclination in SgrA∗, the longest baselines in the 345 GHz ngEHT detect the phase
transition to the n = 1 ring under varying model assumptions.

Given the reality of the comparable signal-to-noise ratio (SNR) of n = 0 and n = 1
interferometric visibilities at ngEHT baselines in realistic accretion flows, the ngEHT
will necessarily report measurements of the n = 1 ring that are strongly dependent on
model specification. Whether the ngEHT measurement is treated as proof of existence
by the astronomical community is dependent on the defensibility of the assumptions
made in model fitting and in testing our methods against simulations. As an exam-
ple, Broderick et al. (2020b) demonstrated a hybrid approach in which a geometrically
agnostic image grid is model fit in parallel with an optional ring component; demon-
stration of the existence of the ring is then reliant on Bayesian information criteria,
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Fig. 7 Geometric model fits containing two geometric “m-rings” with identical prior volume
adapted from Tiede et al. (2022). The fits assume that the two rings, 0 and 1, have hierarchical
widths. Increasing data quality and coverage eventually requires the presence of a sharp ring.
Here w1 specifies the mean and 1σ uncertainty on the thinner ring’s thickness. Starting with
the EHT 2022 array, all arrays have joint 230 GHz and 345 GHz coverage, the most crucial
difference in capability of recovering sharp features.

evaluating whether the data prefers the presence of the ring based on Bayesian evi-
dence. In Sec. 2.2.2 we outline several approaches for static modeling of the n = 1 ring
that are usable not only as probes of parameter values, but also as tests of detection.

2.2.2 Static modeling of the n = 1 ring

As discussed in Johnson et al. (2020), the exponential demagnification of subsequent
photon rings leads to cascading baseline regimes where individual subrings dominate.
However, at the longest baselines accessible to the Earth, i.e., ∼ 10 Gλ at 230 GHz
and ∼ 15 Gλ at 345 GHz, the direct n = 0 and indirect n = 1 image structure are
of comparable flux density, as discussed earlier in Sec. 2.2.1. Here, we mention a few
approaches under development and highlight the philosophical path forward for static
modeling of the n = 1 ring.

Due to a tendency for imaging algorithms to favor smoothness and structure at a
single (pixel) spatial scale, imaging VLBI data is ill-suited to experiments seeking to
measure photon ring structures. In order to measure a sharp feature like the n = 1 ring,
methods which permit (or enforce) the sharp sub-image are necessary. Geometric model
fitting is ideal for general probes of what size of features may be permitted by data.
For example, one can imagine fitting a pair of smooth rings with priors on diameter
and thickness which permit one to be thick (presumably capturing the direct image)
and another to be razor-thin (presumably capturing the indirect image). A sufficiently
lenient prior would yield a posterior on these parameters which indicates whether the
data rejects, permits, or demands a sharp feature to be present. An example of such
a fit for a variety of array architectures and frequencies is shown in Figure 7. The
underlying true model contains a thin ring and a thick ring, but only the combined
data of the ngEHT 230 and 345 GHz arrays are sufficient to require recovery of the
thin ring. This type of test, in which priors are deliberately uninformative, is a useful
pessimistic test of whether the ngEHT will find a photon ring. Alternatively, one may
enforce the presence of a thin ring through the prior volume and allow its diameter to
vary widely. This approach was shown to be very successful in finding the photon rings
present in GRMHD simulations (Broderick et al., 2020b).

Emissivity modeling, however, provides the most direct approach. By taking GR
as given, one may fit ngEHT data with lensed models of the underlying accretion flow.
Such approaches innately capture features of the BH accretion system that are not
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directly probed by imaging or modeling of the sky intensity distribution. In particular,
given a specification of the emitting material, the assumption of GR predicts direct and
indirect lensed images of the flow without the typical cost of adding additional model
components. Thus, any emissivity model-fitting approach will elegantly enable parallel
constraints on the properties of the accretion flow and the spacetime itself. The effects
of non-GR spacetimes on photon ring properties are discussed in Sec. 5.

Fluid models of turbulent plasma are generally too expensive to evaluate in a for-
ward modeling framework, so simplifications of the flow are required. The most estab-
lished model for use with VLBI data is the radiatively inefficient accretion flow (RIAF),
a static axisymmetric three-dimensional model of the emission that has been shown
to successfully capture quiescent structures of GRMHD (Broderick et al., 2009, 2011,
2014). Meanwhile, Tiede et al. (2020) demonstrated promising temporal sensitivity to
mass and spin with a model consisting of infalling hotspots. Most recently, Palumbo
et al. (2022) used the equatorial toy models in Gelles et al. (2021b) and Narayan et al.
(2021) to produce a simple, axisymmetric forward model for the polarized image of the
accretion flow while avoiding radiative transfer.

At first glance, emissivity modeling obviates the typical calibration to GRMHD
simulations performed in previous EHT analysis by directly measuring spacetime pa-
rameters while marginalizing over potential emitting structures (EHT Collaboration,
2019e,f). Though the possibility for (potentially artificially) wider varieties of emission
structures is useful for creating reliable measurements of BH parameters and would
address common criticisms of EHT measurements such as those in Gralla et al. (2019),
model misspecification provides a more fundamental limitation on the success of these
approaches. The task remains to find emissivity model specifications that perform
well on realistic GRMHD simulations, and to build trust in the results from these
approaches, which typically produce (occasionally erroneously) tighter posteriors on
system parameters than other methods.

2.2.3 Harnessing time dependence for photon ring detection

A complementary method to measure the photon ring relies on image variability. Light
rays emitted by any source near the BH travel to the telescope along multiple curved
paths, arriving at different times and image positions. Therefore, the variability of an
optically-thin source must induce intensity correlations between different image po-
sitions and times in the (time-dependent) image. The indirect, n ≥ 1 “light echoes”
are part of the photon ring and the temporal and angular separations between them
are largely universal, i.e. depend on the spacetime geometry in the photon shell. Con-
sequently, a successful measurement of light echoes will constitute a detection of the
photon ring. Moreover, determining their quantitative details will allow measurements
of mass and spin (see Secs. 2.1 and 3) and, eventually, strong-field tests of GR, as we
detail below.

The turbulent environment in the vicinity of a SMBH is expected to produce
significant emissivity fluctuations in large regions of the parameter space. This has
been observationally demonstrated using archival M87∗ data by Wielgus et al. (2020).
Horizon-scale variability was also recently confirmed with sub-mm VLBI with the EHT
as reported in Wielgus and et al (2022) and EHT Collaboration (2022b). As explained
above, the BH spacetime convolves these source fluctuations in an intricate yet universal
manner determined by its lensing properties. This leads to spatio-temporal correlations
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Fig. 8 Universal, self-similar structure in the autocorrelation function C(T, Φ = φ − φ′),
Equation (3), for polar observations of an equatorial disk surrounding a Kerr BH with a∗ =
0.94. The colored peaks arise from pairs of correlated photons with the same half-orbit numbers
n = n′ (red), and different half-orbit numbers |n− n′| = 1 (blue), |n− n′| = 2 (green), and
|n− n′| = 3 (purple). The (identical) shapes of the correlation peaks are determined by source
properties, while their locations and relative magnitudes are determined by the spacetime
geometry. Here γ0, δ0, and τ0 are photon ring critical exponents (Johnson et al., 2020; Gralla
and Lupsasca, 2020a). Figure from Hadar et al. (2021).

of intensity fluctuations across the image, and especially across the photon ring, where
the light echoes appear.

An observable which efficiently distills these correlations from the data is the two-
point correlation function of intensity fluctuations on the photon ring (Hadar et al.,
2021):

C(T, φ, φ′) = ⟨∆I(t, φ)∆I(t+ T, φ′)⟩ , (3)

where ∆I(t, φ) is the intensity fluctuation (integrated over the width of the ring) at
time t and angle φ in the image of the ring.

Importantly, the structure of this correlation function displays universal features.
For optically thin emission, it will display a series of peaks in the space spanned by the
angles and time separation {T, φ, φ′}. The peaks indicate a high degree of correlation,
arising from the fact that different image fluctuations arise from the same source fluc-
tuation in the BH’s vicinity. The locations and relative magnitudes of the correlation
peaks depend only on the BH’s spacetime geometry and not on the emission details and
we therefore refer to them as universal. The shape of the peaks does depend strongly
on the geometric and statistical properties of the accretion flow. An example of the
expectation for C in the case of polar observation is shown in Figure 8.

Preliminary order-of-magnitude estimates in Hadar et al. (2021) indicate an ap-
parent possibility of measuring the correlation function C using an Earth-based array
by upgrading certain aspects of the EHT, in particular the overall observation time.
The main advantage of this observable is that it is in principle sensitive to the photon
ring even when the latter’s width is unresolved. Resolving the diameter (which was
already achieved by the EHT) and essentially attaining adequate temporal resolution
should be sufficient for its measurement. The ngEHT is expected to provide an orders-
of-magnitude improvement over the EHT in the relevant SNR thanks to the addition of
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dedicated stations, which will greatly enhance the overall observation time. The time
cadence of image reconstruction, therefore, must be comparable or smaller than the
BH’s natural geometric timescale. For M87* observations (rg/c ≈ 9 hours) this is not
an issue, but for SgrA∗ (rg/c ≈ 21 seconds) this requirement poses a challenge.

An observability estimate follows from the general principle: SNR ∼
√
Neff , where

Neff is the effective number of samples. Here Neff depends on the source temporal and
angular correlation lengths, and on the magnitude of fluctuations. These are uncon-
trolled parameters which can be estimated for M87* and SgrA∗. Furthermore, Neff

also depends on improvable parameters like temporal and angular resolution, and,
importantly, on the observation time (linearly) and the number of stations (roughly
quadratically). For M87*, Hadar et al. (2021) estimated that ∼ months of monitoring
with ngEHT may give first estimates of C. For Sgr A∗, estimates crucially depend on
the expected temporal resolution, as discussed above. Note that the estimate described
here is but a preliminary step and assessing in full the observability of C demands
significant further work. See Sec. 2.3 for a discussion of possible future improvements
of the method.

A related approach to the utilization of time-dependent emission and its light echoes
was described in Wong (2021), wherein the characteristic signatures of localized emis-
sion events, such as orbiting hotspots, were considered. Such events were shown to lead
to “BH glimmer”, created by light echoes of the direct image. The higher-order images
appear around the photon ring at multiple angles and times, the values of which are
determined by the lensing properties of the Kerr geometry. The glimmer pattern across
positions and times on the ring carries geometric information on the mass, spin and
Kerr nature of the lensing object.

Another interesting proposal concerning autocorrelations was put forward in
Chesler et al. (2021). This work proposed the coherent (i.e., phase-dependent) two-point
autocorrelation function as a potential observable. In principle, electric fields contain
information that intensities (which are phase-independent) do not convey. However,
for ∼mm observations Chesler et al. (2021) argued that this observable was out of
practical reach since it is suppressed by the ratio of the observing wavelength to the
BH length-scale. It remains to be seen whether coherent correlators could be relevant
for other types of observations, or other observables.

The optical signatures of orbiting hotspots around BHs were first considered in
Broderick and Loeb (2005). Their observability with the EHT was the focus of Tiede
et al. (2020), where the effects of shearing of the spot were incorporated within a
semi-analytical model. In addition, it was argued that the observation of multiple such
hotspots would allow to “tomographically” map the spacetime in the vicinity of the
BH. Theoretical predictions for the the astrometric signatures and flux variability of
horizon-scale flares were studied in Saida (2017) and GRAVITY Collaboration et al.
(2020). These were then applied to SgrA∗’s three flares observed by GRAVITY in 2018,
showing their consistency with a hotspot closely orbiting the BH. The time-dependent
signatures of infalling gas clouds in VLBI, and their dependence on BH parameters,
were studied in Moriyama and Mineshige (2015) and Moriyama et al. (2019).

In Narayan et al. (2021), Gelles et al. (2021a), and Vos et al. (2022), the polari-
metric signatures of orbiting hotspots were investigated, studying their dependence on
the BH’s parameters, the magnetic field structure, and the hotspot parameters. Subse-
quently, these models were applied in Wielgus et al. (2022) to data recorded by ALMA
immediately after the Sgr A* X-ray flare, on 11 April 2017. The observed variability
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was interpreted as arising from an equatorial hotspot, orbiting clockwise in a vertical
magnetic field.

In fact, an important signature of strong lensing already lies at the level of the
total luminosity. The latter’s late-time fall-off after a transient accretion process is
predicted to provide an imprint of the photon ring (Podurets, 1965; Ames and Thorne,
1968; Cardoso et al., 2021a). As emitting matter falls towards the BH, e.g., a star or
inhomogeneity in the accreting material, the late-time dependence of the luminosity is
not that due to redshift close to the horizon, but is actually governed by the Lyapunov
exponent, γ, due to the extreme lensing of photons. In particular, the luminosity of
bodies being accreted onto non-spinning BHs decreases as L ∼ e−t/(3

√
3M) as the

object approaches the horizon. Detection of this time dependence would be a strong,
complementary indication of extreme gravitational lensing.

2.3 Open Questions

The work outlined and referenced in this section has demonstrated that ngEHT mea-
surements of the photon ring have the capacity to constrain the mass-to-distance ratio
and spin of M87*. However, much work remains to formalize what will constitute a
reliable detection of the photon ring, as well as the specific pathways to connect mea-
surements of the n = 1 ring to constraints on non-GR spacetimes.

For instance, estimates of the n = 1 subring size using the EHT 2017 data of M87∗

were published by Broderick et al. (2022). The measurement used the hybrid modeling
approach discussed above, which combines a low-resolution image raster with a sharp
ring (Broderick et al., 2020b). The authors demonstrated that this method successfully
measures the n = 1 photon ring properties in a set of five GRMHD images. However,
because any photon ring detection with the EHT or ngEHT will require some degree
of superresolution, these measurements are strongly dependent upon the underlying
methodology and assumptions.

The Broderick et al. (2022) results do not constitute a detection of the photon
ring for a number of reasons. First, tests of hybrid imaging in Tiede et al. (2022) find
that the hybrid imaging methodology readily produces false positives: hybrid imaging
strongly prefers a photon ring even when applied to synthetic data from images with
no photon ring, even if the fitted ring is constrained to be thin. In addition, the fitted
ring parameters are substantially biased by the direct (n = 0) emission. Moreover,
distinct tests in Tiede et al. (2022), Palumbo et al. (2022) and Lockhart and Gralla
(2022) each show that the EHT 2017 data of M87∗ do not constrain the presence
or absence of the photon ring. In short, the use of hybrid imaging for photon ring
detection and measurement requires additional study and development to be reliable,
and its applicability to both the EHT and ngEHT is an active area of research.

Regarding the constraints on non-Kerr metrics that may be possible with ngEHT
photon ring measurements, Wielgus et al. (2020) and Kocherlakota et al. (2023) have
worked out observable differences in ring size in face-on viewing geometries for a number
of GR and non-GR BH alternatives. For example, in parameterised tests of GR, the
spacetime is modified by the presence of extra deformation parameters other than
the spin and mass defined as the “hairs”. Constraining the values of these parameters
can act as a test of GR in the strong field limit. These deformation parameters can
distort the characteristic shape and size of the photon ring, allowing for some stringent
constraints given a strong detection of the ring. The same can be extrapolated to other
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compact objects and solutions of modified gravity theories where these photon rings
tend to have distinct features which can further help in ruling out some of these models.
In addition, it remains to be seen whether and how ngEHT observations could provide
robust, universal ways to infer spacetime symmetries.

There remains much work to be done before static or dynamical modeling of the
accretion flow emissivity distribution will be able to closely approximate all structures
observed in GRMHD simulations. In particular, the RIAF, hotspot, and equatorial
models mentioned in this text do not typically include outflows (self-consistent or
otherwise), while simulation efforts in EHT Collaboration (2021b) show significant
emission along the jet funnel as opposed to the disk in models consistent with the
EHT data on M87∗. Capturing the full space of possible emission geometries is the
most natural way to produce well-motivated uncertainties on BH parameters from
sub-mm VLBI. Levis et al. (2022) has provided a useful first step towards inference of
arbitrary emission regions in a fixed Schwarzschild spacetime without detailed radiative
transfer. Future, more general approaches will be crucial for understanding the level of
confidence of ngEHT measurements and their sensitivity to GRMHD calibration.

Finally, it will be important to look into several open issues regarding time-domain
signatures of the photon ring. As already alluded to, translation of the autocorrelation
observable directly into (semi-)raw visibility amplitudes, bypassing the need for image
reconstruction with each step of a “movie”, could be very useful for analyzing rapidly
varying sources such as Sgr A∗. It will be important to obtain a good heuristic grip on
the observables described in Sec. 2.2.3 away from small inclinations, for varying source
models, and at all possible spins, as well as to discern the effects of deviations from the
universal regime, i.e., the contribution of the correlation between the n = 0 and n = 1
subrings. Ultimately, an end-to-end study of realistic synthetic data generated from
“slow light” GRMHD movies of both SgrA∗ and M87∗ sampled with realistic cadence
is required, imaging each snapshot with the best imaging algorithms available. This
effort is already underway. An outstanding challenge will be to flesh out additional
interesting observables which may benefit from source variability and to define their
associated requirements for the ngEHT.
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3 Measuring black hole mass and spin

3.1 Introduction

According to the uniqueness results, a stationary BH in vacuum is fully characterized
by its mass, spin, and electric charge (Robinson, 1975; Chrusciel et al., 2012; Cardoso
and Gualtieri, 2016). Astrophysical BHs are expected to be electrically neutral due to
quantum discharge effects, electron-positron pair production, and charge neutralization
by astrophysical plasmas (Gibbons, 1975; Goldreich and Julian, 1969; Ruderman and
Sutherland, 1975; Blandford and Znajek, 1977). Therefore, mass and spin are the only
fundamental quantities that determine the BH geometry within GR (Zajaček et al.,
2018). Measuring the masses and spins of BHs will help constrain their formation
channels and growth mechanisms (Volonteri, 2010; Volonteri et al., 2021), map out
the population demographics (Shankar et al., 2004), and examine BH feedback models
(Terrazas et al., 2020). The spin of BHs is also relevant for probing ultra-light fields,
as discussed in Sec. 4.

Observables obtained by the ngEHT have been proposed to probe the strong-gravity
regime of the BH spacetime, which in turn constrain the BH mass and spin, assuming
the Kerr metric. Some of them (i.e., BH/light ring imaging) have already been employed
for the measurement of mass and spin for M87* and Sgr A*. Others may require specific
signatures of accretion flows (e.g., hotspots), additional information (e.g., polarization)
and/or temporal measurements (e.g., autocorrelation), which should become accessible
through the ngEHT. In particular, they can provide an unprecedented opportunity to
probe properties of near-extremal BHs, which are deeply connected to the holography
principle.

The mass and spin measurement of Sgr A* will likely be conducted earlier and
more accurately by other means, e.g., through a combination of S-star orbits, possible
clouds, pulsars, or lurking stellar-mass BHs. The ngEHT measurements can thus most
likely be verified by comparing to these alternative methods (Will, 2008; Psaltis et al.,
2016). Here, we discuss how the combined information can be used to break possi-
ble degeneracy of parameters in any individual approach, in order to achieve better
measurement precision.

3.2 Overview of ngEHT observables for measuring mass and spin

The EHT collaboration has announced the observation results for two supermassive
BHs so far: M87* (EHT Collaboration, 2019a) and Sgr A* (EHT Collaboration, 2022a).
By measuring the emission region diameter and combining with calibrations from
GRMHD simulations, the mass of M87* is determined to be (6.5 ± 0.7) × 109M⊙,
corresponding to an angular diameter of the shadow 42± 3µas. The angular diameter
of Sgr A* is measured to be 51.8± 2.3µas and the corresponding mass is constrained
within 4.0+1.1

−0.6 × 106M⊙, consistent with constraints from the S-stars. The most pre-
cise measurements of the mass are reported by the VLTI as (4.297± 0.013)×106 M⊙
(Abuter et al., 2022), and by Keck as (3.951± 0.047) × 106 M⊙ (Do et al., 2019b).
These differ because of the difference in R0 between the two results: scaling the Keck
measured mass to the VLTI distance yields 4.299 ± 0.063 × 106 M⊙ (Abuter et al.,
2022). The current EHT-based mass value, due to its 20–80 times larger error, is not
sufficiently precise to distinguish between these two aforementioned values.
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The spin magnitude of M87* is poorly constrained but the image morphology is
consistent with the shadow of a spinning (instead of non-spinning) Kerr BH. If the spin
axis and M87’s large-scale jet are aligned, then the BH spin vector is pointed away from
the Earth, with recent studies showing this can still be the case even for misaligned
accretion flows (Chatterjee et al., 2020). On the other hand, the Sgr A* images disfavor
scenarios where the BH is viewed at high inclination, as well as non-spinning BHs and
those with retrograde accretion disks.

Table 2 Mass measurements for the SMBH at the center of the Milky Way.

GRAVITY/VLTIa Keckb EHTc

Sgr A* (4.297± 0.012)× 106M⊙ (3.975± 0.058)× 106M⊙ (4.0+0.1
−0.6)× 106M⊙

a

Abuter et al. (2022), b Do et al. (2019b), c EHT Collaboration (2022a).

3.2.1 Light ring imaging

As discussed in Sec. 2, within the EHT image there exists a theoretically infinite se-
quence of lensed images of the emission region. The locations of these photon rings
asymptote to the boundary of the shadow, the size and shape of which encodes the
mass and spin of the BH (Medeiros et al., 2020; Johannsen and Psaltis, 2010; Taka-
hashi, 2004; Falcke et al., 2000; Luminet, 1979; Hilbert, 1917). Actual observables are
likely, by virtue of being luminous, the low-order images, i.e., primary, secondary, and
tertiary images, corresponding to the n = 0, 1, and 2 photon rings in Broderick et al.
(2022) and Johnson et al. (2020). The relative locations of the lensed images at different
orders depend on mass and spin, enabling a measurement of both. Because this remains
true even for polar observers, observing the secondary presents a unique pathway to
measuring spins in M87* and Sgr A*.

The expected width of the n = 1 photon ring is ≲ 1µas, and thus well below
the diffraction limit of Earth-bound mm-VLBI. Nevertheless, combined modeling and
imaging techniques might provide an ability to both extract the highly uncertain pri-
mary image and constrain properties of an additional narrow ring-like image feature
(Broderick et al., 2020b). This procedure leverages high SNR to separate the n = 1
photon ring and diffuse primary emission on Earth-sized baselines, and assumes that
one does not encounter a noise floor of systematic uncertainties.

While it is possible to extract the ring diameter with EHT coverage (Broderick
et al., 2020b), measuring the width and total flux in the n = 1 photon ring will only
be possible with the additional stations and sensitivity of the ngEHT. The first EHT
analyses of M87* already super-resolve the source, achieving a typical resolution of
∼ 10µas. Given the strong priors that accompany a specified ring model, the degree
of super-resolution in the determination of the ring width, w, is approximately:

σw
b

∼ 1

2πuwN
√
ns SNR

∼ 1%×
(
SNR

7

)−1 ( u

10Gλ

)−1
(

w

1µas

)−1 (
N

20

)−1 (ns
10

)−1/2
,

(4)

where N is the number of stations, ns is the number of independent scans, b = 1/u ∼
20µas is the nominal beam, u is the maximum baseline length in λ, and SNR is the
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Fig. 9 Left: predicted joint constraints on mass and spin from measurements of the primary
and secondary images (i.e., the n = 0 and n = 1 photon rings) of the emission about a BH
with mass M = 6.5× 109 M⊙ and spin a∗ = 0.85, appropriate for M87*. The two lines show
the degenerate constraint when the emission is dominated by that at 2 rg (black) and 6 rg
(orange). The combined 1σ regions are indicated in blue for diameter measurements of various
precision, ranging from σd/b = 0.1% to 0.4%. Right: estimates of the precision of mass (top)
and spin (bottom) for different intrinsic BH spins, as a function of diameter measurement
precision. The open points show the fiducial value in Equation 5.

thermal signal-to-noise ratio. Thus, N × SNR ≳ 140 is needed to eventually achieve
the sub-1µas precision needed to resolve the n = 1 photon ring width in a single
observation.

A single measurement of the diameter of the n = 1 photon ring alone would
provide a mass measurement that has a bounded systematic uncertainty. For equatorial
emission seen by a polar observer, the diameter of the n = 1 photon ring ranges
from 4.30 M/D to 6.17 M/D as the radius of the peak emission moves from the
horizon to infinity (Broderick et al., 2022), where D is the source distance. Thus,
the conclusive detection of a photon ring necessarily eliminates the current dominant
systematic uncertainty for mass estimates of M87*.

The differing behavior of the primary and secondary image dependence on the
emission location provides a means to probe spin. A single simultaneous measurement of
the primary emission location and n = 1 photon ring results in a degenerate constraint
on the mass and spin of M87*. Similar to the ring width, it should be possible to
constrain the diameter of the photon ring considerably better than the nominal beam:

σd
b

∼ 1

πN
√
nsSNR

∼ 0.1%×
(
SNR

7

)−1 (
N

20

)−1 (ns
10

)−1/2
, (5)

where the significant improvement arises because the ring diameter, unlike the ring
width, is well resolved by Earth-sized baselines. Because the emission region in M87* is
highly variable (EHT Collaboration, 2019a,b,c,d,e,f, 2021a,b), two such measurements
of the primary emission and the n = 1 photon ring diameter made at widely separated
times, and thus for different characteristic emission radii, produce estimates for both.
An illustrative example for M87* is shown in Figure 9, in which the radius of the peak
emission moves from 2 rg to 6 rg between observations. Measuring the radii of the direct
emission and the n = 1 photon ring in either epoch results in degenerate measurements
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of mass and spin shown by the two lines. Combining the two epochs produces a joint
measurement of mass and spin, where the precision depends on the difference in the
emission region location, the true BH spin, and the degree of super-resolution in the
measurement of the n = 1 photon ring diameter.

3.2.2 Hotspot tracking

M87* and Sgr A* both exhibit localized variability in the emission region. In M87* this
variability appears as ejections within the jet, which are instrumental to measuring the
jet velocity on milliarcsecond scales (Jeter et al., 2020; Ly et al., 2007; Walker et al.,
2016; Hada et al., 2016). In Sgr A* it appears as broad-spectrum flaring, extending
from the millimeter to the X-ray (Genzel et al., 2003; Gillessen et al., 2006; Dodds-
Eden et al., 2009; Witzel et al., 2012; Neilsen et al., 2013; Ponti et al., 2017; Fazio
et al., 2018), and at least a subset of these have been associated with orbiting features
(Abuter et al., 2018). Simultaneous X-ray and infrared (IR) observations of Sgr A*
variability hint at the multiwavelength emission properties of orbiting hotspots (Boyce
et al., 2019) and their close links to particle acceleration mechanisms (e.g., Ball et al.,
2019). The dynamical nature of the “hotspots” enable high-precision measurements of
BH mass and spin (Broderick and Loeb, 2005, 2006; Doeleman et al., 2009b; Abuter
et al., 2018; Tiede et al., 2020).

Flare reconstructions are fundamentally strong lensing experiments, relating the
direct emission and higher-order lensed images from a dominant, compact emission
region. The chief systematic uncertainty is the astrophysics of the flare emission itself,
including its unknown orbit, temporal evolution, density, temperature, and rate of
shear. For these reasons, relating flare orbital periods to those expected for circular
geodesics (i.e., Keplerian motion), is not a direct measure of spacetime properties.
However, the relationship between the primary and secondary images is independent
of the orbital dynamics, requiring only motion to selectively relate different regions
of the image plane (Broderick and Loeb, 2005, 2006). Reconstructing a single flare
observed over a handful of orbits would yield a sub-1% accuracy spin measurement,
while simultaneously recovering the astrophysical hotspot parameters over a wide range
of flare models, BH parameters, and in the presence of an obscuring accretion flow and
intervening scattering in the Galactic disk (Tiede et al., 2020). Yet, flares could cool on
shorter time scales than the orbital time scale, and shearing may render it impossible
to observe significantly more than one full orbit.

Each flare observed by ngEHT would produce an independent measurement of the
gas rotation, which can provide constraints of BH spin (Conroy et al., 2023). The ob-
servation of flares occurring at multiple orbital radii probes the spacetime at different
locations, therefore providing an immediate test of the Kerr metric, which demands all
such spin measurements be consistent with each other (Tiede et al., 2020). The obser-
vation of flares at different frequencies provide a means to test the achromatic nature
of lensing in GR. Thus, observations of multiple flaring epochs enables a tomographic
mapping of the BH spacetime.

The most significant practical limitation is the need to observe multiple, high-
brightness flares, dominated by orbiting features. For both M87* and Sgr A*, this is
most readily accomplished with a monitoring campaign that triggers target of opportu-
nity observations. While the full (u, v)-coverage of the ngEHT is preferable, modeling
with even a 10 station subset, e.g., only the proposed new ngEHT sites, would suffice
for dynamical flare modeling to produce high-precision spin estimates.
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3.2.3 Photon ring autocorrelations

As discussed in Sec. 2, the two-point correlation of intensity fluctuations on the pho-
ton ring encodes information about the background spacetime, which can be used to
measure the BH mass and spin. Here we provide more details about the underlying
principle and the estimation of the SNR.

The correlation function C is expected to be described by localized peaks with
separations in time and azimuthal angle around the ring. For example, if two light rays
are emitted from the same point source and perform half-orbits of the BH k and k′

times, respectively, before reaching the observer, they will contribute to a peak in the
correlation function. These peaks can be labeled by m = k − k′ and should share an
identical profile based on the source statistics. The peak width is set by the correlation
length of fluctuations in the source, while the locations and relative heights of the peaks
are dependent on the BH parameters. Specifically, each successive peak is suppressed
by e−γ and is translated by (τ, δ), where γ, τ , and δ are the critical exponents that
describe geodesics near the critical curve. The critical exponents have been computed
analytically for the Kerr spacetime (Johnson et al., 2020; Gralla and Lupsasca, 2020a).
For a geodesic approaching the critical radius, the ratio of distances from the critical
radius of successive half-orbits k is:

δrk+1

δrk
≈ e−γ . (6)

While these near-critical geodesics stay near the critical radius, they continue to move
in the other directions. The elapsed time ∆t and the swept azimuthal angle ∆ϕ for
each half-orbit, which approach a constant value for large half-orbit number k, are
given by:

∆t ≈ τ + δtk , ∆ϕ ≈ δ + δϕk , (7)

and δtk, δϕk ∼ e−kγ → 0 as k → ∞. Observing the correlation structure would
provide measurements of the critical parameters (γ, τ, δ) and, as these are dependent
on the BH spacetime, would in turn allow for estimates of the BH mass and spin. The
SNR for the correlation of N independently sampled pairs of intensity functions for
individual images can be estimated as (Hadar et al., 2021):

SNR ∼ lϕθph

θobs
SNR∞ , (8)

where SNR∞ is the SNR for an idealized case of infinite resolution and the mth corre-
lation peak

SNR∞ ∼ e−|m|γ

√
2πtobs

lϕlt
. (9)

Here tobs is the observing time, lt and lϕ are the correlation lengths in the t and ϕ
directions, respectively, θph is the angular radius of the photon ring, and θobs is the
finite angular resolution of the observation.

Based on this SNR estimate and as mentioned in Sec. 2, detecting the m = 1
peak of M87* with the EHT would require observations every few days over a span of
many months or even several years. Due to Sgr A*’s significantly shorter gravitational
timescale, the limiting factor becomes the ability to form an image with very short (∼
minutes) observations. An ngEHT-like array with the capability to create movies of
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Sgr A* would be sufficient and the SNR for the m = 1 peak of Sgr A* would be about
two orders of magnitude larger than the SNR for M87* for the same observing dura-
tion, primarily because of the shorter coherence time for Sgr A* (Hadar et al., 2021).
Reaching a high enough SNR to detect the m = 2 and higher-order correlation peaks,
however, would require a significantly improved array and many years of observations.

Whilst observations that can detect the m = 1 correlation peak may be possible
with the proposed ngEHT array, more work needs to be done to pin down the various
technical requirements. In addition, it is not yet clear how the SNR of the peaks
translates into uncertainties in the mass and spin measurements. More work is also
required to determine if correlations in the astrophysical structure of the disk could
contaminate the correlation function.

3.2.4 Polarization spirals in direct and indirect images

n
=

0

a∗ =-0.94 a∗ =-0.5 a∗ =0 a∗ =+0.5 a∗ =+0.94

n
=

1

Fig. 10 Time-averaged images of the direct (n = 0) image and first lensed (n = 1) image from
MAD GRMHD simulations at various spins, rotated so that the approaching jet is oriented
288◦ East of North (adapted from Palumbo and Wong, 2022). Ticks show the EVPA. Polar-
ization spirals about the ring become more radial at higher spin magnitudes, reverse direction
over radius in retrograde flows (a∗ < 0), and approximately reflect through the origin across
sub-image index n. These images use the Rhigh electron heating prescription, each having
Rhigh = 80, a reasonable value for both M87* and Sgr A* (Mościbrodzka et al., 2016; EHT
Collaboration, 2019e, 2022c). The simulations themselves were generated with iharm3d (Gam-
mie et al., 2003) and ray traced with ipole (Mościbrodzka and Gammie, 2018). See Wong
et al. (2022) for additional details on the ray tracing.

Although the astrophysical details of the accreting plasma often confound measure-
ments of spacetime properties, occasionally the emission illuminates BH properties.
Figure 10 shows time-averaged images of MAD simulations decomposed into direct
and indirect images for a variety of spins. In these images a number of features with a
direct connection to spin are seen. Most apparent is the electric vector position angle
(EVPA) spiral, which becomes more radial at higher spin magnitudes, as first identi-
fied in Palumbo et al. (2020). Emami et al. (2023) studied the spiral trend in detail,
finding that this effect arises from frame dragging causing the plasma velocity and
magnetic field to become more toroidal in structure at higher spins, causing the polar-
ization (perpendicular to the magnetic field) to appear more radial in structure. We see



Fundamental Physics Opportunities with the ngEHT 27

also that the sub-image polarization spiral has opposite handedness compared to the
direct image spiral. This feature arises from the complex conjugation of the Walker-
Penrose constant (Walker and Penrose, 1970) across sub-images, derived in Himwich
et al. (2020). This conjugation has a simple behavior in the face-on, zero-spin limit, and
leads to an approximate reflection of the polarization through the origin, as observed
in GRMHD in Palumbo and Wong (2022) and is related to a depolarization near the
photon ring observed in Jiménez-Rosales et al. (2021). The detailed relationship be-
tween the direct and indirect image polarization is a direct probe of spin. Lastly, we
see that in retrograde models, the spiral changes direction from the large scale accre-
tion rotation direction at large radii to the interior, strongly frame-dragged region, as
investigated in Ricarte et al. (2022).

Taken together, there are several pathways through which images with high reso-
lution and dynamic range can be used to elucidate spin, given prior assumptions and
understanding of the underlying accretion flow properties. These features are more
difficult to observe in models undergoing standard and normal evolution (SANE), but
both EHT results and results from the GRAVITY collaboration support the conclusion
that M87* and Sgr A* are in the MAD state (Gravity Collaboration et al., 2020). These
features are also more difficult to observe in individual snapshots, but the ngEHT is
proposed to observe M87* with a roughly weekly cadence, enabling analysis of average,
quiescent structure, while the same can be done with Sgr A* in the course of a few
days. Polarized emission from the accretion flow will be a crucial tool in probing the
BH spacetimes of M87* and Sgr A*, and should complement more general approaches
which attempt to circumvent astrophysical details. Cases with a single-baseline for
polarimetry were studied by Palumbo et al. (2023).

3.2.5 Probes of extremal BH/signatures of NHEK

As rotating BHs approach the extremal limit, a non-degenerate near-horizon region
emerges with an enhanced conformal symmetry, often referred as near horizon extremal
Kerr (NHEK). Thanks to the presence of NHEK, there are a set of zero-damping
quasinormal modes with slow decay rates (zero in the extremal limit) (Yang et al.,
2013), and the field perturbations display self-similar behavior (Gralla and Zimmerman,
2018). The NHEK perturbations are important as their prescription determines how an
infalling particle never overspins a near-extremal BH to produce a naked singularity, as
required by Weak Cosmic Censorship (Sorce and Wald, 2017). The additional conformal
symmetry also allows the construction of the Kerr/CFT conjecture (Guica et al., 2009)
which relates a 2+1 conformal field to the NHEK region. It is therefore of fundamental
theoretical interest to probe and test the signatures of the NHEK, with ngEHT and/or
other observations.

Astrophysical BHs may reach dimensionless spins of up to a∗ ∼ 0.998, assuming
Shakura-Sunyaev thin-disk accretion (Shakura and Sunyaev, 1973). For these rapidly
spinning BHs, the Green’s function exhibits a transient power-law growth in the near-
horizon region and a transient power-law decay at far distances (Yang et al., 2013),
as compared with the exponential signature of the Green’s function for generic spins.
This power-law behavior of the Green’s function, as a manifestation of collectively
excited zero-damping modes, is a direct signature of NHEK and its enhanced sym-
metry. One possible way to test this signature is through the measurement of photon
ring auto-correlations. For near extremal Kerr BHs, the correlation function follows
a power law (instead of exponential) relation between different peaks separated by
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angle and time, which may be resolved through performing measurements with suffi-
cient accuracy. Roughly speaking, in order to distinguish between a power-law decay
from an exponential decay in the correlation function, at least the correlations of the
m = 0,m = 1 pair and the m = 0,m = 2 pair are needed, although it is challenging to
detect the m = 2 peaks since this requires observation over many years (see discussion
in previous subsection). With only the m = 0,m = 1 pair, it is possible to perform a
consistency test between the measured correlation and the inferred correlation if the
Green’s function follows a 1/t power-law decay. Such correlation may also be inter-
preted as e−γ(M,a∗) for appropriate (M,a∗), but the degeneracy may be broken by
including constraints of (M,a∗) from other observables. In this setting, the SNR of the
correlation in Equation 8 should be modified as:

SNR ∼ lϕθph

θobs

(
C

|m|τ

)√
2πtobs

lϕlt
, (10)

where C is a numerical factor to be determined by the Green’s function. The higher the
SNR, the better the statistical confidence that can be claimed for the consistency test. It
is also noteworthy that this power-law signature is comprised of a subclass of photon
orbits close to the equatorial plane of the BH. A further observer-inclination-angle-
dependent modification should be incorporated in order to further refine Equation (10).

Another possible avenue is to search for related signatures in the BH image and/or
the transient images of hot spots (Gralla et al., 2018), since part of the co-rotating light
rings reside on the horizon (with deviation much smaller than the gravitational radius).
Recent studies have investigated MHD accretion flows onto BHs with a∗ = 0.998, in
both the Kerr spacetime and in other theories of gravity (Younsi et al., 2023; Chatterjee
et al., 2023b,c). Defining ϵ ≡ (1 − a∗)

1/3, the flux of the hotspot generally scales as
ϵ/ log ϵ (Gralla et al., 2018), i.e., diminishing flux in the extremal limit. The redshift
factor of the emission varies with orbital phase, with peak blueshift factor being

√
3

and redshift factor being 1/
√
3. The redshift/blueshift factor of Iron Kα lines may be

used for such a test. It is, however, unclear what the most relevant observables for
ngEHT measurements in this context will be. In addition, the number of high-spin
candidates for ngEHT measurement is currently highly uncertain.

3.3 Overview of complementary measurements of mass and spin

Accurate measurements of mass and spin are vital to understand the nature of BHs
and explore their discovery potential. In order to draw firm conclusions, it is important
to cross-check such measurements with other independent observations. In many cases,
the mass and spin estimates may exhibit degeneracy to certain degrees. To break such
degeneracy it is useful to have complementary measurements which can be combined
appropriately. We briefly discuss below alternative measurements of BH mass and spin
from S-stars, pulsars, GWs, and quasi-periodic oscillations (QPOs).

3.3.1 Probing Sgr A* with S-stars

The Sgr A* SMBH in the Galactic Center is surrounded by a dense cluster of young
stars, commonly referred to as S-stars. Some of them have been discovered with small
periastron distances and high eccentricities (Schodel et al., 2002; Meyer et al., 2012;
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Abuter et al., 2022) and are powerful probes of the properties of Sgr A*. By mon-
itoring the orbit of the star S2, the GRAVITY instrument (Abuter et al., 2017, a
near-infrared interferometer mounted at the ESO VLTI) has detected the leading or-
der relativistic effects, i.e., the relativistic redshift (Abuter et al., 2018; Do and et al,
2019) and Schwarzschild precession (Abuter et al., 2020, 2022), constraining the mass
of the central object to a very good precision (see Table 2) (Abuter et al., 2022). The
typical precision of mass measurement with S-stars is in the range 0.01%−0.1%, since
the tightness of the mass measurement depends on the relative ratio of the astrometric
accuracy to the semimajor axis and the ratio of the redshift accuracy to the orbital
velocity (Weinberg et al., 2005; Zhang et al., 2015), and does not depend directly on
the semimajor axis or eccentricity.

The spin and quadrupole moment of Sgr A* can be constrained by detecting spin-
induced effects and quadrupole-induced precession in the motion of S-stars (Will, 2008;
Psaltis et al., 2016; Zhang et al., 2015; Waisberg et al., 2018). The spin of Sgr A* induces
Lense-Thirring precession on the S-star orbits and rotates the orbital plane around the
spin axis. This precession should be observable both in astrometry and radial velocity
space (Will, 2008; Zhang et al., 2015; Waisberg et al., 2018). To constrain the spin
parameter, S-stars need to be found within milliparsec-scale distance of Sgr A*, where
the key parameter is the pericenter distance dperi. Detecting quadrupole-induced effects
will be even more challenging. Explicit simulations for the GRAVITY+ project (Abuter
et al., 2022) show that the simple time-averaged estimates by Merritt et al. (2010) were
too pessimistic, as tracking the orbits will reveal the moment of the deviation, which
for spin or quadrupole effects will coincide with a pericenter passage. The combination
of astrometry from GRAVITY+ and spectroscopy from ELT-MICADO should be able
to deliver a spin measurement within a few years of operation, assuming a star with
suitable dperi can be tracked.

The S-stars found to-date do not pass close enough to Sgr A*, thus the mea-
surements of spin and quadrupole parameters have not yet been achieved (Iorio, 2020;
Gravity Collaboration et al., 2022). The upgraded GRAVITY+ instrument, with higher
sensitivity, may possibly find closer S-stars with sufficient brightness, and will continue
to monitor S2 over a longer period of time, thereby yielding estimates of the spin and
quadrupole moment of the central object (Psaltis et al., 2016; Zhang et al., 2015; Yu
et al., 2016; Waisberg et al., 2018; Gravity Collaboration et al., 2022). Two or more S-
stars in closer orbits are often required, so that the combination of position and redshift
data provide complementary information to measure the spin of Sgr A* (Will, 2008;
Zhang et al., 2015). Figure 11 shows the constraints of mass and spin parameters of
Sgr A* with two stars assumed to have orbital periapsis distances of 800 rg and 1000 rg
and eccentricities of 0.9 and 0.8, respectively, whilst assuming an astrometric precision
of 10 µas (Psaltis et al., 2016). These studies did not account for the improvement
possible with ELT spectroscopy, which will bring into reach stars of spectral types that
show rich spectra in the near-IR, potentially achieving radial velocity uncertainties as
low as ∼ 0.1 km/s (Evans et al., 2015; Simon et al., 2019), two orders of magnitude
better than what is currently possible with S2.

3.3.2 Observation of Sgr A* EMRIs with LISA

Extreme mass ratio inspirals (EMRIs) where stellar-mass compact objects orbit SMBHs
are an important class of GW source for milliHertz GW detectors (Amaro-Seoane et al.,
2017; Pan and Yang, 2021a). Stellar-mass BHs and compact stars orbiting around
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Sgr A* are potential compact binary sources (referred to here as Sgr A* EMRIs) that
can be explored with the future Laser Interferometer Space Antenna (LISA) GW ob-
servatory (Naoz et al., 2020; Gourgoulhon et al., 2019). Such observations will provide
a promising direction for measuring the spin of Sgr A*. The prospect of such mea-
surements has been studied recently in Gourgoulhon et al. (2019) and Tahura et al.
(2022) in the case of circularized binaries with orbital separations ≤ 102 rg (here rg
denotes the gravitational radius of Sgr A*; see also Yang et al. (2022) for an analysis
with brown dwarfs), which are well motivated by several formation scenarios (Emami
and Loeb, 2021, 2020; Pan et al., 2022; Pan and Yang, 2021b). As the location and
distance of Sgr A* from the Solar System are known, the waveform template bank
for such systems requires fewer parameters, leading to a threshold SNR of detection
(∼ 10) which is much smaller than a typical threshold (∼ 20) for EMRIs detectable
by LISA (Babak et al., 2010). Fisher analyses with Monte-Carlo samplings of the di-
rection and magnitude of the spin of Sgr A* suggest that the spin can be measured
within ∼ 2% uncertainty. Such precision may thus be better than that achievable via
future S-star and pulsar observations, and a comparison among them is presented in
Figure 11. Furthermore, one can estimate the direction of the spin of Sgr A* with
similar accuracy from GW observations with LISA (Tahura et al., 2022).

There are various issues worth noting in this scenario of spin measurement. First of
all, it relies crucially on the abundance of stellar-mass BHs near Sgr A* and whether
they are massive enough to produce signals above the threshold SNR. In addition,
distributed dark matter may create an orbital precession degenerate to that of the spin-
induced one (see also Sec. 4). However, according to analysis in Heißel et al. (2022),
these effects will be easily distinguishable via observations of the star S2. Finally,
eccentric Sgr A* EMRIs can be generated in the mass segregation scenario (Linial and
Sari, 2022; Emami and Loeb, 2020, 2021; Alexander and Hopman, 2009; Binney and
Tremaine, 2011), for which the higher harmonics of orbital frequency also contribute
to the gravitational waveform. Since the higher harmonics of the frequency should be
closer to the most sensitive band of LISA, the event SNRs for such EMRIs are expected
to be higher than the circular ones considered in Tahura et al. (2022), resulting in more
precise parameter estimation. However, detailed studies in this regard are yet to be
performed.

3.3.3 Pulsars around the Sgr A* black hole

Timing of pulsars near Sgr A* provides an alternative way to probe the spacetime ge-
ometry. In particular, such observations are in principle capable of measuring the three
lowest-order moments of the BH, namely its mass (M), spin vector (S⃗), and quadrupole
moment (Q) with high precision (Kramer et al., 2004; Bower et al., 2018, 2019; Della
Monica et al., 2023). Similar to measurements of BH shadows, observations of pulsars
can be used to test the Cosmic Censorship Conjecture, the uniqueness properties of
BHs, and modified gravity (Liu et al., 2012; Psaltis et al., 2016; Dong et al., 2022b).

Pulsar timing is essentially a ranging experiment, which measures the projected
pulsar orbit along the line of sight. Although until now no such pulsars have been
discovered in the vicinity of Sgr A*, targeted searches are ongoing. Population studies
and the expected sensitivity and range of new telescopes, e.g., the Square Kilometre
Array (SKA; Wharton et al., 2012; Shao et al., 2015; Goddi et al., 2016; Weltman et al.,
2020) demonstrate that one might discover such a pulsar, although others have been
cautious (Dexter and O’Leary, 2014). If a pulsar is discovered in a close orbit around
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Fig. 11 Fractional error in the mass of Sgr A* (∆M/M with ∆M denoting 1-σ error in M) vs.
1-σ error in the dimensionless spin of Sgr A* (∆a∗) achieved from various observations. The
dimensionless spin parameter is defined as a∗ = |S⃗|/M2 (Kramer et al., 2004). Observation
of the star S2 with GRAVITY places a constraint on M with ∆M = 1.3 × 104 M⊙ (Abuter
et al., 2022), shown by the horizontal range in blue. Implementing such bounds on mass,
GW observations with LISA can achieve ∆a∗ = 0.013 (Tahura et al., 2022) (vertical range
in green). The orange bar shows the precision of mass and spin measurements the future
GRAVITY instrument can achieve (∆M/M ≃ 0.05% and ∆a∗ = 0.035), given that S-stars
are found closer to Sgr A* (Psaltis et al., 2016; Zhang et al., 2015). Projected pulsar timing
observations can obtain ∆a∗ = 0.024 (horizontal range of the red line), while ∆M/M is of
the order 10−6 (Psaltis et al., 2016), which is much smaller than the scale of the above figure.
The δd/b = 0.2% case in Figure 9 is reproduced here for comparison, as labeled by “Light
Ring”. Future pulsar timing and GRAVITY experiments have the potential to provide the
most precise spin measurements.

Sgr A*, the orbital dynamics are determined by the BH spacetime, and/or in the
sequence of the post-Newtonian expansion, the mass, spin, and quadrupole moments
that show up in the equation of motion at different post-Newtonian orders. Different
values of these parameters predict different evolution behaviours of the orbit, which in
turn leave traces in the pulsar timing data. Therefore, with a dedicated experiment, the
multipole moments of Sgr A*’s spacetime geometry can be extracted with precision.

Figure 11 shows an example from simulations reported by Psaltis et al. (2016).
An eccentric orbit with e = 0.8 and an orbital period Pb = 0.5 yr is assumed. In
order to account for the external perturbations from matter around Sgr A*, only data
around three passages of periapsis are used. Within such a scenario the mass and spin
can already be constrained with sub-percent-level accuracy. The degenerate directions
of these constraints are very different from other measurements with the S-stars and
BH shadows. Therefore, a combination of these with pulsar data would reduce the
uncertainty in BH parameter measurements, although the precision of the pulsar mea-
surement trumps all other experiments. However, one must emphasize that the different
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independent methods will serve as important cross-validation of each other, and finding
any discrepancy between methods would have important consequences.

3.3.4 Quasi-periodic oscillations

QPOs may probe the strong field regime of BHs as their timescales correspond roughly
to those of matter orbiting in the innermost regions of the accretion disc, assuming
that the cause of emission variations is due to motions in the gravitational field and
not due to quasi-periodic heating mechanisms (e.g., Kato et al., 2010; Dolence et al.,
2012; Shcherbakov and McKinney, 2013; Dokuchaev, 2014; Miyoshi et al., 2011; Brink
et al., 2015).

For sources suitable for dynamical imaging by the ngEHT, namely Sgr A*, QPOs
have been reported in the radio band on timescales of the order of tens of minutes,
usually falling in the range of time periods T ∼ 17 − 57 mins (Miyoshi et al., 2011;
Shcherbakov and McKinney, 2013; Dokuchaev, 2014) and occur roughly in integer
ratios (Miyoshi et al., 2011; Brink et al., 2015). However, even for well studied sources
such as Sgr A*, the inference of BH spin from QPO measurements has not produced
consistent results. Shcherbakov and McKinney (2013) assumed a model spin to be
a∗ = 0.9375 which predicts the QPO with T ∼ 35 mins and is different from the
results of Dolence et al. (2012), who assumed the same BH spin. Dokuchaev (2014)
attempted to explain the QPOs as light curves of orbiting hot spots on nearly circular
orbits. By analysing the observed QPOs of periods 11.5 mins and 19 mins, the spin
was inferred to be a∗ ≈ 0.65, which is consistent with the (broad) range inferred from
mm-VLBI (Broderick et al., 2009). Dokuchaev’s model associated the T ∼ 11.5 mins
QPO with the period of rotation of the BH horizon and the T ∼ 19 mins to the
latitudinal oscillation period of hot spots (Dokuchaev, 2014) moving on nearly circular
orbits. However, there are certain limitations on sensitivity of orbiting hotspots to
spin measurements (Matsumoto et al., 2020; Gelles et al., 2021a). Nevertheless, due
to multi-wavelength observations of QPOs (Dolence et al., 2012), inferring spin from
QPOs modelled in terms of hotspot motion seems a viable avenue to explore. The
recent EHT results of Sgr A* (EHT Collaboration, 2022a) showed that observations
were consistent with models that had spins of a∗ = 0.5 and a∗ = 0.94 and these are
rather close to the QPO-based spin inference discussed above.

The importance of hot spots for probing the spacetime and its role in determining
spin has already discussed in Sec. 3.2.2. Herein, we note that the QPO frequencies
based on modelling of hot spots discussed in Dokuchaev (2014) are independent of the
astrophysical model, hence it is possible that BH spin measurements can be obtained
which are agnostic to at least some astrophysical uncertainties.

In a similar vein, if we further align with the hot spot model for studying QPOs,
as has been done across the multi-wavelength spectrum (Schnittman and Bertschinger,
2004; Schnittman, 2005; Zamaninasab et al., 2008; Johannsen and Psaltis, 2011b; Do-
lence et al., 2012), the quantity in radio astronomy which is sensitive to modelling
variability in these hotspots is the closure phases (Doeleman et al., 2009b), which can
show periodicity over several cycles. In particular, the periodicity of orbital hotspots
manifests in closure phases at both, 230 GHz and 345 GHz (Doeleman et al., 2009b). As
was also noted in Doeleman et al. (2009b), detection of periodicity is enhanced by the
addition of more telescopes in the western hemisphere and, comparatively, increase in
bandwidth is of lesser importance. On the other hand, increased bandwidth is desirable
for studying polarisation of the source (Doeleman et al., 2009a,b). Thus, the possibility
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of measuring spins from QPOs can directly inform instrumentation requirements for
the ngEHT and combining the observations at 230 GHz and 345 GHz can potentially
provide stronger constraints on BH spins of astrophysical sources such as Sgr A*.

3.3.5 Near-IR flares and orbiting hot spots

Near-IR observations with adaptive optics resolution at the 8m–10m-class telescopes
revealed quasi-periodic light curves of Sgr A* (Genzel et al., 2003; Hamaus et al.,
2009), although the number of cycles observed was too low to firmly conclude whether
a periodic process was truly causing the variations (Witzel et al., 2012). If true, the
oscillation period obviously sets a lower bound on the spin.

The situation has now become much more compelling with the discovery of astro-
metric loops during NIR flares observed with GRAVITY (Abuter et al., 2020). The
data directly show that hot spots revolve clockwise around Sgr A* in a near-Keplerian
motion at radii of around 8 rg, with a close-to face-on geometry. Strong support for
this picture comes from simultaneous polarimetry of the near-IR flares. These flares
show loops in the Q-U plane, with the same revolution time. This can be explained by
a poloidal magnetic field geometry and the low inclination angle of the Sgr A* system.

Whether the flares (and other quasi-periodic features) can actually be used to probe
the spacetime around Sgr A* is not yet clear. Simulations by Ressler et al. (2018) show
that the geometry of the inner accretion disc, along which the hot spot motions, are
governed by the influx of angular momentum from the incoming material, i.e., stellar
winds of massive stars in the case of Sgr A*. The orientation of the mean flares’ angular
momentum vector is consistent with that of the disk of massive young stars moving
clockwise at radii between 1–10 arcseconds (Paumard et al., 2006; Lu et al., 2009; von
Fellenberg et al., 2022).
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4 Searching for ultralight fields with the ngEHT

Shortly after Peccei and Quinn proposed a resolution of the strong CP problem (Pec-
cei and Quinn, 1977b,a),i.e., the puzzling smallness of the CP violating parameter in
QCD, it was realized that it would lead to the appearance of a light pseudo-scalar,
the “axion” (Weinberg, 1978; Wilczek, 1978). Laboratory and astrophysical data con-
strain the axion to be an “ultralight boson” with a mass below the eV scale (Workman
et al., 2022). Cosmological constraints imply a lower bound on the typical QCD axion
mass (Preskill et al., 1983; Abbott and Sikivie, 1983; Dine and Fischler, 1983), close to
which it could be a viable dark matter candidate. Similar ultralight bosons have since
been proposed in a plethora of beyond Standard Model theories (Svrcek and Witten,
2006; Abel et al., 2008; Arvanitaki et al., 2010; Goodsell et al., 2009; Marsh, 2016; Fre-
itas et al., 2021). Such particles, like the QCD axion, can be compelling dark matter
candidates, but are extremely hard to detect or exclude with usual particle detectors.
Their low mass makes them a special type of dark matter candidate with de Broglie
wavelengths that can be as large as a galaxy (Hu et al., 2000; Robles and Matos, 2012;
Schive et al., 2014; Hui et al., 2017; Ferreira, 2021). This feature can lead to interest-
ing unique properties when compared to other dark matter candidates. For example,
ultralight bosons can form solitonic structures where the balance between gravitation
and “quantum” pressure leads to a flat core profile in the inner region of galaxies. This
mechanism, proposed to address small-scale puzzles in the observations of galaxies (Hu
et al., 2000; Robles and Matos, 2012; Schive et al., 2014; Hui et al., 2017; Broadhurst
et al., 2020; De Martino et al., 2020; Pozo et al., 2021), also provides a lower limit on
the mass of dark matter (Bar et al., 2018), comparable to limits from cosmology (see,
e.g., Kobayashi et al., 2017). Depending on the masses and couplings of the bosons,
such self-gravitating structures or “boson stars” could even mimic BHs (Liebling and
Palenzuela, 2023).

Quite remarkably, very light bosonic particles can also dramatically influence the
dynamics of rotating BHs, specially when the BH horizon scale is of the order of the
Compton wavelength of the boson. Then, rotating BHs can become unstable against the
production of light bosonic particles due to a energy-extraction process known as BH
superradiance, akin to the Penrose process and the Blandford-Znajek process (Penrose
and Floyd, 1971; Zel’dovich, 1971; Blandford and Znajek, 1977; Brito et al., 2015b).
This process drives an exponential growth of the field in the BH exterior, while spinning
the BH down, forming a dense bound state or “cloud” around the rotating BH. This
mechanism leads to several observable consequences, affecting the mass and spin of
SMBHs, as well as their images made possible by the EHT and the ngEHT instruments.

The goal of this section is to discuss how the EHT and the ngEHT can be used to
study the existence of ultralight bosons. We will consider three main observables: in
Sec. 4.2 we first discuss how precise measurements of the mass and spin of astrophysical
BHs allow the exclusion of minimally coupled bosons. Section 4.3 is devoted to the
discussion of several direct gravitational signatures that can be used to constrain or
detect the existence of ultralight bosons. Namely, in Sec. 4.3.1 we discuss how the
ngEHT could detect ultralight bosons through the direct observation of the long-term
evolution of the superradiant instability and then present examples where the existence
of ultralight bosons could lead to geometries which can differ from Kerr. In particular,
we discuss the so-called Kerr BHs with bosonic hair in Sec. 4.3.2, whereas in Sec. 4.3.3
we discuss how the oscillating metric perturbations induced by superradiant clouds
made of real bosons could be detected using the photon ring autocorrelation. We then
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also mention compact bosonic self-gravitating configurations in Sec. 4.3.4 which are
discussed in more detail in Sec. 5.2.1. Section 4.3.5 discusses how the motion of S-stars
around Sgr A* can constrain the total mass of the cloud in a certain mass window. In
Sec. 4.4 we then discuss how for axion-like particles which interact with photons the
formation of an axion cloud can lead to periodic oscillations of the orientation of the
linear polarization of photons. Finally, in Sec. 4.5 we close with some open issues.

4.1 The theory

Our starting point is the generic Lagrangian density for massive, minimally coupled
bosons:

L =
R

16π
− 1

2
∇µa∇µa− V (a)− 1

4
BµνBµν −

1

2
m2
VXνX

ν + LEH(H)

− m2
T

4

(
HµνHµν −H2

)
,

(11)

where ∇µ is the covariant derivative. For axion-like particles a, the potential is
V (a) = m2

af
2
a [1− cos(a/fa)], where ma is the axion mass, fa is the decay con-

stant characterizing some high energy scale. For a small self-interaction, i.e. a/fa ≪ 1,
the potential V (a) ≈ m2

aa
2/2 simply becomes a mass term.

The theory above also includes a possible new vector field Xµ of mass mV and
corresponding tensor Bµν ≡ ∇µXν − ∇νXµ, and a tensor field Hµν of mass mT .
The theory above only considers the Fierz-Pauli term for massive tensors, and describes
a broad class of nonlinear theories expanded around vacuum Kerr background (Brito
et al., 2013, 2015b, 2020). From now on, we will collectively refer to the mass parameter
of these new fields as mb = (ma,mV ,mT ). Note that the physical mass of the boson
is ℏmb.

The corresponding equation of motion for such massive fields can be studied in
a fixed Kerr background, as long as backreaction effects are small, which is the case
for bosonic dark matter or for bosons produced from superradiance alone (see, e.g.,
Brito et al., 2015a; Herdeiro and Radu, 2017). A convenient procedure is to separate
angular variables 2, expanding the wavefunction Ψ describing a boson of spin s in a
given set of angular functions carrying two indices. One of them, l, specifies the total
angular momentum. The other, namely the azimuthal number,m, is associated with the
projection of the angular momentum along the z−axis (Brito et al., 2015b). A Fourier
analysis of the resulting “radial” equation, i.e., assuming a general time dependence
∼ e−iωt results in a single ordinary differential equation, which is in fact an eigenvalue
problem for ω.

For any bosonic field Ψ , there is an unstable mode which grows exponentially in
time as Ψ ∼ eωIt, where the instability rates, ωI , can be found in Brito et al. (2015b)
and have the general dependence (Detweiler, 1980; Cardoso and Yoshida, 2005; Dolan,
2007; Pani et al., 2012; Baryakhtar et al., 2017; Cardoso et al., 2018a; Dolan, 2018;
Baumann et al., 2019; Brito et al., 2020):

ωI ∼ ΥSlmα
4l+5+S (mΩBH −mb) , (12)

2 For generic BH spins, separation of variables has only been achieved for massive scalar
and vector fields (Brill et al., 1972; Dolan, 2007; Frolov et al., 2018; Dolan, 2018). For massive
tensors no such separation is known, but the full problem, involving a system of elliptic partial
differential equations, has recently been solved in Dias et al. (2023).
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where S = −s, −s + 1, . . . , s − 1, s is the spin projection along the z-axis and the
Υslm coefficients can be found in Brito et al. (2015b). In the above, ΩBH is the angular
velocity of the BH and α ≡ Mmb is the gravitational coupling. The only exception
to the scaling (12) is a special dipole mode that exists for massive spin-2 fields (Brito
et al., 2013; Dias et al., 2023). This special mode scales as ωdipole

I ∝ α3 (ΩBH − ωR),
where ωR ∼ 0.73 mb, and has an instability timescale much shorter that any other
superradiant mode. Precise values of ωdipole

I for generic BH spins and values of α can
be found in Dias et al. (2023).

The instability occurs only for large enough rotations, a clear sign of its superradiant
nature. Owing to the results above, the modes of a boson field around a spinning BH
are amplified if the BH angular velocity at the horizon is larger than the angular phase
velocity of the incident wave, i.e., mΩBH > mb. These modes populate the BH over a
volume with radius comparable to the Compton wavelength 1/mb.

Superradiance is most effective for highly spinning BHs and when the boson Comp-
ton wavelength is comparable to the BH gravitational radius rg ≡ M (Brito et al.,
2015b). For a minimally coupled scalar, the growth is dominated by a dipolar mode
which can grow on a timescale:

τ =
1

ωI
∼ M

106M⊙
yr , (13)

where M the BH mass. This is the shortest possible instability timescale and requires
large BH spins and a gravitational coupling α ∼ 0.42, or:

mb ∼ 5.6× 10−17

(
106M⊙

M

)
eV . (14)

The instability deposits the BH rotational energy into the boson field, which forms a
bosonic structure outside the horizon, co-rotating with the BH, and with a length scale
∼ 1/(Mm2

b).
We should note that additional interaction terms can be added to action (11), such

as couplings of the axion to photons. In the presence of self-interactions or additional
couplings, the exponential growth due to the superradiant instability could be ter-
minated once the field value becomes sufficiently large (Yoshino and Kodama, 2012;
Fukuda and Nakayama, 2020; Baryakhtar et al., 2021; Ikeda et al., 2019; East, 2022;
Omiya et al., 2023; Spieksma et al., 2023; Chen et al., 2023b). On the other hand, the
presence of additional interactions can also lead to unique signatures, as we discuss in
more detail in Sec. 4.4.

4.2 Constraints from black-hole spin measurements

From the discussion of the previous section we can infer for example that a BH of mass
∼ 1010M⊙ like M87* can be superradiantly unstable for ultralight bosons of masses
∼ 10−21 eV from Equation (14). This ultralight boson mass is close to the range of
“fuzzy” dark matter (Davoudiasl and Denton, 2019), which is relevant for dynamics on
galactic scales (Ferreira, 2021).

The instability time scale can be extremely short compared to typical astrophysical
time scales and, therefore, relevant for astrophysical BHs (cf. Equation 13). The insta-
bility removes rotational energy from astrophysical BHs, and hence a robust observable
for this effect concerns the BH “Regge” plane: if a bosonic field of a certain mass exists,
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Fig. 12 Exclusion regions in the BH spin-mass diagram obtained from the superradiant in-
stability of Kerr BHs against massive bosonic fields for the two most unstable modes. The
top, middle, and bottom panels refer to scalar, vector and tensor fields, respectively. For each
mass of the field (reported in units of eV), the separatrix corresponds to an instability time
scale equal to the Salpeter time τSalpeter ≈ 4.5 × 107 yr , i.e., inside each colored region the
instability timescale would be shorter than τSalpeter. For illustration we consider bosons with
masses ranging from 10−21 eV to 10−17 eV. For the massive tensor case we only show two
masses to minimize clutter in the figure. The gray lines and error bars denote the measured
mass of Sgr A* (Abuter et al., 2022) and M87* (EHT Collaboration, 2019a).
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BHs with certain masses/spins will slow down on short timescales and should not be
seen, up to observational uncertainties. For very weakly self-interacting bosons, the
process depends primarily on the mass and spin of both the BH and the fundamental
boson. By requiring the predicted instability timescale to be smaller than the typical
accretion timescale (which tends to instead spin-up the BH), one can then draw regions
in the parameter space where highly spinning BHs should not reside, if bosons within
the appropriate mass range exist in nature (Arvanitaki et al., 2010; Brito et al., 2013,
2015a; Davoudiasl and Denton, 2019). This is illustrated in Figure 12 for scalar, vector
and tensor fields, where we show exclusion regions in the BH spin-mass diagram for
bosons with masses ranging from 10−21 eV to 10−17 eV.

Fig. 13 Exclusion regions for the two most unstable modes as a function of the spin of Sgr
A* and M87* when fixing Sgr A*’s mass to M ≃ 4× 106M⊙ (Abuter et al., 2022) and M87*’s
mass to M ≃ 6.5 × 109M⊙ (EHT Collaboration, 2019a). As in Figure 12, the separatrices
correspond to an instability time scale equal to the Salpeter time τSalpeter ≃ 4.5× 107 yr.

Such a spin-down effect allows use of BH spin measurements to constrain the exis-
tence of ultralight bosons (see Brito et al. (2015b) for a review of current constraints).
Measurements of BH mass and spin with ngEHT are discussed in detail in Sec. 3. Given
that the BH mass is generally much better constrained than the BH spin, the uncer-
tainty in the measurement of the BH mass has a minimal impact on these constraints.
To illustrate the possible constraints that could be obtained from Sgr A* and M87*
given their measured mass, in Figure 13 we show the exclusion regions as a function of
the BH spin. In particular, Figure 13 shows that obtaining a lower limit on its spin is
enough to place some constraints on a range of boson masses (with the specific boson
mass range constraint dependent on the magnitude of the measured BH spin; Davoudi-
asl and Denton, 2019). For example, from Figure 13 one can see that for a conservative
spin measurement of M87* with a∗ ≳ 0.5 (Cruz-Osorio et al., 2022), one could exclude
scalar fields with masses around ∼ 3×10−21 eV. On the other hand, a non-zero spin for
Sgr A* would constrain bosons with masses around ∼ 3× 10−18 eV. Given the shorter
instability timescale for vector and tensor fields compared to scalar fields, constraints
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for vector and tensor fields are stronger. This is especially true for tensor fields due
to the very short instability timescale of the special dipole mode (Dias et al., 2023).
For example, measuring the spin of M87* to be a∗ ≳ 0.2 would be enough to impose
constraints for vector fields with masses ∼ 10−21 eV, whereas for tensor fields the mea-
surement of a non-zero spin in Sgr A* and M87* would be enough to exclude massive
tensor fields with masses in the whole range from ∼ 10−23 eV up to ∼ 10−17 eV (Dias
et al., 2023). Boson masses of this order-of-magnitude are particularly interesting since
this mass range is so far mostly unconstrained (Brito et al., 2015b; Ferreira, 2021).

A key ingredient in the spin-down calculation is the timescale on which astrophysi-
cal processes spin up a BH. If a BH is accreting at the Eddington limit, the characteris-
tic timescale for significant spin-up is largely independent of the BH mass and is given
by the Salpeter time τSalpeter ≈ 4.5× 107 yr (Shankar et al., 2009). Super-Eddington
accretion could reduce this timescale further. On the other hand, EHT observations
have indicated that both M87* and Sgr A* are currently significantly sub-Eddington
Ṁ/ṀEdd ∼ 2 × 10−5 and Ṁ/ṀEdd ∼ 10−9, respectively (Kuo et al., 2014; EHT
Collaboration, 2019e, 2022a), which would increase the spin-up times accordingly. The
impact of the time scale shifts the location of the constraints to the lower mass side3.
As the spin up time increases, lighter masses can be ruled out. The power law depen-
dence on the timescale, however, is weak and has an exponent that can be obtained
from Equation (12).

Finally, we point out that while ruling out ultralight bosons with spin measurements
of BHs is relatively straightforward, making a discovery of ultralight bosons via this
effect is much more challenging, although technically possible. If one had a reasonable
estimate of the initial spin distribution of BHs or believed that the spins of BHs were
generally large, and if one measured the masses and spins of a large population of BHs,
then one would see a characteristic dependence between the maximum spin of a BH and
its mass if an ultralight boson existed in the relevant mass range (see, e.g., Arvanitaki
et al., 2017; Brito et al., 2017; Ng et al., 2021, where this possibility was studied in the
context of BH spin measurements obtained via GW observations of stellar-origin and
massive BH binaries). In practice, however, the discovery of ultralight bosons using
this method would likely be prone to very large modelling uncertainties.

4.3 Direct gravitational effects

4.3.1 Observing the superradiant instability evolution

We now turn to considering the possibility that superradiant evolution within a given
timescale may be observable (Roy and Yajnik, 2020; Creci et al., 2020; Roy et al., 2022;
Chen et al., 2022c). VLBI techniques have recently allowed the observation of the image
of the dark shadow surrounding M87* (EHT Collaboration, 2019a) and Sgr A* (EHT
Collaboration, 2022a) by a global network of radio telescopes. This has opened up the
possibility to test physics in the strong gravity regime via BH imaging. As mentioned
above, one such interesting phenomenon in strong gravity is the exponential growth of
ultralight bosons near a BH via superradiance. This leads to rapid extraction of spin

3 For sufficiently short astrophysical spin-up timescales no constraints on ultralight bosons
can be derived for any measured spin. Given the expected limits from the Salpeter time, it is
expected that constraints can be derived assuming sufficiently large spins are measured.
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and energy from the BH, which could be detectable as a change in the shadow of the
BH image.

To further discuss this phenomenon, we consider the evolution of minimally coupled,
massive bosonic fields, as in Equation (11). We assume that the backreaction due to
the presence of the boson fields is negligible on the Kerr background and that the
propagation of the boson fields acts as a perturbation over the background Kerr metric.
As was mentioned, such a hypothesis is justified by the fact that the total mass of the
boson cloud adds up to a fraction of the BH mass that is distributed over a large volume
∼ M3/m6

b , with mb the mass of the generic boson field, therefore exerting negligible
distortion on the background spacetime (Brito et al., 2015b; Roy et al., 2022).
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Fig. 14 Left panel: the evolution of the mass of the boson cloud MB (top) and of the dimen-
sionless BH spin parameter a∗ (bottom), as a function of time in years for (initial) α = 0.2
and for different choices of the bosonic nature: scalar field (red), vector field (blue), tensor
field (green), with the set of quantum numbers as given in the text. The initial mass of the
boson cloud is MB = 10−1 M⊙ (solid line) and MB = 10−6 M⊙ (dashed line). We assume
an initial BH mass M = 4.3 × 106 M⊙ and initial spin a∗ = 0.99. Right panel: evolution of
shadow contours (gray lines) during different stages of superradiance for a vector with initial
α = 0.2 and a BH viewed at different inclination angles. The background depicts the intensity
map with an initial value of a∗ = 0.99. The coordinate origin is taken to be the BH location
and the axes are specified in units of the initial gravitational radius.

To better assess this, we have solved the equations describing the evolution of
the occupancy number of the boson cloud, N(t) = MB/mb, where MB is the mass
of the cloud, the dimensionless BH spin parameter a∗ due to superradiance, and the
mass change of the BH. We have neglected the change in the mass of the BH due to
accretion, since we work on timescales that are shorter than the Salpeter timescale.
The exponent of α in Equation (12) predicts that some of the modes experiencing
the fastest superradiant evolution have l = 1, S = 0 (scalar field), l = 1, S = −1
(vector field), or l = 2, S = −2 (quadrupole mode of a tensor field). For illustration
purposes we do not include the evolution of the massive tensor field dipolar mode, which
has a much shorter instability timescale (Dias et al., 2023). Other than this special
dipolar mode, the spectrum of the unstable modes for a massive vector field generally
lead to the shortest timescales (Pani et al., 2012; Baryakhtar et al., 2017; Cardoso



Fundamental Physics Opportunities with the ngEHT 41

et al., 2018a; Dolan, 2018). For example, the timescale for the superradiance evolution
associated with a scalar field with α = 0.2 around a BH of mass M ∼ 106 M⊙
is t ∼ O(104 years), while repeating the estimate for a vector field with the same
parameters reduces the timescale to t ∼ O(10 years).

Figure 14 shows the evolution of the mass of the boson cloud MB (top left) and a∗

(bottom left) due to superradiance caused by a scalar field (red), a vector field (blue)
and a quadrupole mode of the tensor field (green), assuming the mass of Sgr A* as
M = 4.3 × 106 M⊙ with initial spin parameter a∗ = 0.99, for an initial coupling
α = 0.2, corresponding to the mass mb ≈ 6 × 10−18 eV, for two different choices of
the initial mass of the boson cloud: MB = 10−1 M⊙ (solid line) and MB = 10−6 M⊙
(dashed line). For this example, the change in the BH mass is ∼ 3% for the scalar
and vector fields, and ∼ 5% for the tensor field. The initial value of the boson cloud
mass only affects the timescale (and not the relative change in the BH mass) since the
evolution of both the spin parameter and the BH mass are proportional to the total
number of bosons.

At this point, we note that SMBHs are very old, hence the probability of observ-
ing superradiance in one of the observations is vanishingly small, since the instability
should have saturated by now. There are, nevertheless, circumstances where this might
happen, if, for example, a bosenova suddenly leads to cloud destruction (Yoshino and
Kodama, 2012), and the exponential extraction of the BH spin restarts. A varying
boson mass predicted in quintessence models (Tsujikawa, 2013) that recently entered
the superradiant region is also possible.

Examples of evolution of the shadow contours are shown on the right panel of
Figure 14. The center of the shadow is clearly separated from the BH located at the
origin, with the distance increasing with a∗ and the inclination angle i. Thus the drift
of the shadow center, which evolves in the axis perpendicular to the spin projection,
can be a smoking gun of superradiant evolution at large i (Chen et al., 2022c). For
example, at i = 60◦, a 10 µas drift is possible for both vector and tensor fields. On
the other hand, using photon ring autocorrelation (Hadar et al., 2021), one can record
yearly variations in the azimuthal lapse, δ0, which is sensitive to the BH spin (Gralla
and Lupsasca, 2020a) at low i. These two ways are thus complementary and both
benefit from long-duration observation times.

4.3.2 Black holes with synchronised bosonic hair

The growth of a bosonic field around a Kerr BH due to superradiance may or may
not lead to an equilibrium state. If the bosonic field is complex, the BH-bosonic
field system can form true stationary configurations: BHs with synchronised bosonic
“hair” (Herdeiro and Radu, 2014, 2015a; Herdeiro et al., 2016). Such BH equilibrium
configurations exist with both scalar and vector (Proca) fields, under a general syn-
chronisation mechanism (see Herdeiro et al., 2015; Delgado et al., 2019, 2021, for more
details and generalizations).

Focusing on the scalar case, i.e., Equation (11) with Xµ = 0, Hµν = 0 and
V (a) = m2

a|a|2/2, but now with the field a complex and (∇a)2 also becoming |∇a|2,
one can construct fully non-linear BH solutions in GR minimally coupled to a complex
massive bosonic field a. Although the metric is assumed to be stationary and axially-
symmetric, the full solution is not, due to the explicit time dependence assumed in
the harmonic ansatz for the scalar a ∼ ei(kφ−wt), where k and w are respectively the
azimuthal harmonic integer and the field frequency (Herdeiro and Radu, 2015a). This
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allows one to evade some well-known no-hair theorems (Herdeiro and Radu, 2015b).
Although some of the solutions can display quite unusual BH shadow shapes and very
distinct gravitational lensing signatures (Cunha et al., 2015, 2019; Cunha and Herdeiro,
2018; Vincent et al., 2016a), one of the regions in the domain of existence with most
potential to describe astrophysical and viable solutions lies in the proximity to the
Kerr limit. In that region one may find configurations that might be formed within
astrophysical timescales.

The growth timescale of a scalar field due to superradiance is extremely sensitive to
the resonance of the BH mass scale M with the Compton wavelength of the ultralight
particles. In addition, BHs with bosonic hair are also not absolutely stable and can
suffer from their own superradiant instabilities (Ganchev and Santos, 2018; Degollado
et al., 2018). One possibility is that M87* started as a Kerr BH and grew scalar hair
within an astrophysical timescale (e.g., ≲ 0.1% of the Hubble time (Degollado et al.,
2018)), transforming into a BH with bosonic hair state that is effectively stable to its
own superradiant instabilities over cosmological timescales (Ganchev and Santos, 2018;
Degollado et al., 2018), provided that one restricts to the interval:

maMM87 ∈ [0.1, 0.3] =⇒ ma ∈ 1−3× 10−20 eV . (15)

Within this range, each hairy BH solution can be identified by a two-parameter set of
values {p, M ma}, where p = 1−MH/M measures the fraction of the spacetime mass
stored in the bosonic hair. Here MH denotes the Komar mass of the horizon and M
denotes the total (ADM) mass. The parameter, p, satisfies 0 ⩽ p ⩽ 1, interpolating
between vacuum Kerr BHs in the test limit of a for (p = 0), and horizonless boson
stars for (p = 1). Fully dynamical numerical evolution of complex vector fields growing
from vacuum Kerr by superradiance (East and Pretorius, 2017) suggest a maximal
possible value of p ∼ 9% (Herdeiro and Radu, 2017). If the process is approximately
conservative, then an upper limit of p ∼ 10% should exist regardless of the spin of the
bosonic field (Herdeiro et al., 2022).

The shadow areal radius R of BHs with bosonic scalar hair can be compared with
the Kerr case, for the same total mass M . Such a comparison is appropriate if most
of the scalar hair is spread over a length scale of ∼ 10 M , which is typically the
case for the hairy BH solutions under consideration here. Under these circumstances,
signature effects of the scalar field can be expected to be subdominant on far-away
measurements of the total mass M , using, e.g., stellar orbital motions over length
scales ≫ M . Assuming i = 17◦ for M87*, the relative shadow deviation δR depends
very weakly on Mma and is accurately parameterized by a function of p alone (Cunha
et al., 2019):

δR(p) ≡ 1− Rhairy

RKerr
≃ p+ p(p− 1)A , with A ≃ 0.111159 . (16)

Since RKerr ≃ 19µas, the detection of bosonic scalar hair close to the upper limit
of p ∼ 10% requires an ngEHT angular resolution close to 1.7µas, whereas a finer
measurement of p below 1% would require resolutions smaller than ∼ 0.1 µas. Con-
straining the value of p for M87* via ngEHT observations would directly measure how
much mass can exist in a bosonic field in equilibrium with the SMBH.

Naively, one might expect similar results to also hold for BHs with synchronised
vector (rather than scalar) hair. However, as was reported recently in Sengo et al.
(2023), there are some regions in the solution space of BHs with vector hair that could
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still be compatible with the EHT observations of both M87* and Sgr A*, despite
containing a significant portion of the mass stored in the hair, e.g., p ∼ 40%. This
would include solutions just below p ∼ 29%, i.e., the thermodynamic upper limit
for configurations that might have grown from Kerr via superradiance. Indeed, as we
increase the coupling Mmb of the BH solution with vector hair, for a fixed value of p
it would become increasingly more difficult for it to be ruled out by EHT (or ngEHT)
observations. This is a feature that is in contrast to the scalar case.

4.3.3 Photon ring astrometry for real bosons

We next focus on superradiant clouds made of real bosons. The coherently oscillat-
ing features of their wavefunctions generate periodic metric perturbations. On long
timescales, these metric perturbations dissipate energy from the cloud in the form of
potentially detectable gravitational waves, for example, in the LISA band for a cloud
outside Sgr A* (Brito et al., 2015b). On the other hand, locally, these metric perturba-
tions also modify the photon geodesics propagating from the BH horizon scale towards
us, providing potential signals for EHT and ngEHT (Chen et al., 2023a).

More explicitly, metric perturbations around a Kerr background gKµν can be written
as gµν ≃ gKµν + ϵ hµν , where ϵ ≪ 1 controls the perturbative expansion, and hµν
represents the metric perturbations generated from a bosonic cloud. In this metric,
photon geodesics also undergo small perturbations compared to the geodesics in a
Kerr background xµ(0), i.e., xµ ≃ xµ(0) + ϵ xµ(1), where xµ(1) is the deviation to the
background geodesic calculated using hµν and the Kerr metric.
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Fig. 15 Left panel: examples of deviations from the Kerr background photon geodesics as
a function of the affine parameter, λ, generated by bosonic clouds with α = 0.2. The initial
values are λ0 = 0, r0 = 103 rg, i = 17◦, and a∗ = 0.94. The gray vertical line shows the time at
which the unperturbed orbit xµ

(0)
crosses the BH equatorial plane for the first time. Right panel:

prospects for constraints on the total mass of a vector cloud using photon ring autocorrelations.
We show both the ground state (S, l,m) = (−1, 1, 1) with α < 0.5 and a higher mode (S, l,m) =
(−1, 2, 2). The constraint bands range from a conservative criterium based on ngEHT’s spatial
resolution ∼ 10 µas to an optimistic criterium based on the intrinsic azimuthal correlation
length of the accretion flow ℓϕ ≈ 4.3◦. Constraints from a joint observation of motion of stars
and EHT ring size measurements (Sengo et al., 2023) are shown in red, and theoretical bounds
on the maximum superradiant extraction for MB/M (Herdeiro et al., 2022) are shown in green.

The left panel of Figure 15 shows examples of the deviation xµ(1) using Cartesian
Kerr-Schild coordinates (t, x, y, z), for a massive tensor and a vector cloud with α = 0.2
in the hydrogenic-like ground state (Chen et al., 2023a). We take the initial point at
i = 17◦ and the BH spin to be a∗ = 0.94 as benchmark values to be consistent with
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M87* (EHT Collaboration, 2019a). The evolution of the deviation can be divided in
two stages: an oscillatory stage due to the time-varying energy-momentum tensors of
the bosonic clouds and a second stage where the deviation grows exponentially when
reaching the nearly-critical orbits of the photon ring. This second stage is caused by the
instability of the photon ring orbit and is separated from the oscillatory stage by the
time xµ(0) it first crosses the BH’s equatorial plane. Therefore, the deviation for lensed
photons significantly surpasses that of direct emission, along with the local plasma
dynamics.

To detect small geodesic deviations, one sensitive probe is to use the photon ring
autocorrelation discussed in Sec. 2.2.3, which can measure both the time delay and
azimuthal lapse from sources emitting in the BH’s equatorial plane. The right panel of
Figure 15 shows the prospects to constrain the total mass of a vector cloud as a function
of α. The constraint is computed by requiring that the oscillation of the azimuthal
lapse generated by the vector cloud is larger than the Gaussian smearing width due
to a finite spatial resolution ∼ 10 µas or the correlation length of the accretion flow
ℓϕ ≈ 4.3◦ (Hadar et al., 2021). Two other constraints are shown for comparison,
including a joint observation of the EHT ring size measurement and motion of stars,
as discussed in Sec. 4.3.2, and a theoretical bound on the maximum mass a boson
cloud can reach due to superradiance, assuming that there is no angular momentum
supplement to the BH (Herdeiro et al., 2022).

For a massive tensor cloud that couples to electromagnetic photons directly, con-
straints for MB will be more stringent (Chen et al., 2023a), for which the n = 1 photon
ring can already constrain a previously unexplored region of the parameter space. In
addition, one can also probe their existence if the massive tensor is dark matter and
forms a soliton core outside Sgr A*.

On the other hand, a scalar cloud generates time delays more efficiently than spatial
deflections, which can in principle also be detected using time domain correlations.
Compared to the azimuthal lapse, time delays are more difficult to detect, due to the
large correlation time (Hadar et al., 2021). However, a nearby point-like source such
as a hotspot or a pulsar can strongly boost these searches with a significantly better
time resolution (Chesler et al., 2021). These sources can also play important roles to
look for n = 2 peaks in the autocorrelation.

The oscillation amplitude of the azimuthal lapse is more significant in the inner
region of the critical curve due to a stronger photon ring instability in this region (Chen
et al., 2023a). Thus, the improvements in spatial resolution and dynamic range of the
ngEHT are crucial to resolve these fine structures in the expected oscillation pattern.
Searches for the n = 2 ring, which can probe larger regions of the parameter space
for both vector and tensor clouds, can also be boosted with an increase in baseline
coverage.

4.3.4 Boson and Proca stars

For complex bosons, the hairy BH solutions described in Sec. 4.3.2 connect smoothly to
horizonless, self-gravitating structures known as boson or Proca stars, when the field is
a massive scalar or vector, respectively. These are interesting BH mimickers and, in the
context of EHT observations, the appearance of such solutions has been explored (e.g.,
Vincent et al., 2016b; Olivares et al., 2020; Herdeiro et al., 2021). While it is shown
that under some circumstances these objects produce ring-like structures similar to BH
images, in other cases they can produce images with a bright core that are qualitatively
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different, and therefore easily distinguishable. These two distinct behaviors, as well as
the size of the ring, depend on a number of factors, such as the compactness of the
stars, the particular boson field model used to construct the stars, or the inclination
angle at which observations are made. In principle, knowledge of these properties could
make it possible to set bounds on the star parameters that are compatible with present
and future observations (Olivares et al., 2020; Herdeiro et al., 2021). For further details
we refer to Sec. 5.2.1 where the capabilities of the ngEHT to discriminate these objects
are discussed in the context of horizon physics.

4.3.5 Motion of S-stars

Besides constraints from lensing signals from the Galactic Center by the ngEHT, one
should also take into account that observations of S-stars orbiting Sgr A* may impose
interesting constraints on putative boson clouds that could be present around Sgr A*. S-
stars have been largely monitored and studied in the past decade using both astrometry
and spectroscopy, with particular attention paid to the orbit of the star S2. The latter is
one of the closest stars to the Galactic Center, reaching a minimum distance of 120 AU
(∼ 1200 Schwarzschild radius) from the central mass. The high precision of the data
collected independently by both the GRAVITY Collaboration (Abuter et al., 2019)
and the UCLA Galactic Center group (Ghez et al., 2008) enabled constraint of both
the mass of the central object M ∼ 4.3 × 106 M⊙ and the Galactic Center distance
D ∼ 8.3 kpc. The hypothesis that Sgr A* is in fact a SMBH has been supported by
the direct measurement of both gravitational redshift and the Schwarzschild precession
value of ∆ω = 12.1′′ per revolution in the orbit of S2 (Abuter et al., 2018, 2020;
Do et al., 2019a). Data collected for S2 have also been used to test the presence of
an extended mass within its apocenter, with particular attention paid to spherically
symmetric dark matter density distributions (see, e.g., Lacroix, 2018; Bar et al., 2019;
Heißel et al., 2022)). The GRAVITY Collaboration (Abuter et al., 2022) provided the
current 1 σ upper bound of 0.1% of M (equivalent to δM ∼ 4000 M⊙) on the dark
mass around Sgr A* using the motion of four S-stars (S2, S29, S38, S55).

In the context of ultralight scalar fields, a bosonic structure around a SMBH has
an impact on stellar orbits (Cardoso et al., 2011; Fujita and Cardoso, 2017; Ferreira
et al., 2017; Bošković et al., 2018; Amorim et al., 2019; Della Monica and de Martino,
2023a,b). The presence of a scalar cloud may affect the orbital elements of S2 in a
way that is potentially detectable by the GRAVITY interferometer, since the in-plane
precession it induces in the orbit is competitive with the first Post-Newtonian (PN)
correction, i.e., with the Schwarzschild precession. Describing the scalar cloud by two
parameters, the fractional mass Λ = MB/M and its dimensionless mass coupling
constant α, the largest variations in the orbital elements of S2 (Amorim et al., 2019)
are expected for:

0.001 ≲ α ≲ 0.05 , (17)

corresponding to an effective scalar field mass of 10−20 eV ≲ ma ≲ 10−18 eV and an
effective peak position of 1.2 × 104 rg ≲ Rpeak ≲ 3 × 106 rg. The latter is in fact
comparable with S2’s orbital range of 3 × 103 rg ≲ rS2 ≲ 5 × 104 rg, meaning that
the scalar cloud has a larger impact on the dynamics of S2 if the star crosses regions
of space where the scalar density is higher. We note that for Sgr A* and for ultralight
scalar fields with masses in the range (17), the superradiant instability timescale is in
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general longer than a Hubble timescale (see Figure 12), except for values of α close
to the upper end of that limit, hence the scalar cloud must be formed by means of
a different process. A recent analysis of the astrometry and the radial velocity of S2
showed no substantial evidence for a scalar cloud structure with mass coupling roughly
in the range (17). The fractional mass of the cloud can be constrained to be Λ ≲ 10−3

at the 3σ confidence level, corresponding to 0.1% of the central mass, setting a strong
bound on possible bosonic structures around Sgr A* (Foschi et al., 2023).

4.4 Polarimetric measurements for axion-induced birefringence

We have so far focused on bosons that interact only gravitationally or interact only
very weakly through possible additional couplings. However, from a particle physics
perspective, there are strong reasons to include couplings to all of the Standard Model
particles. In fact, the introduction of an axion was originally made specifically in order
to couple with gluon sector, so as to explain the smallness of the electric dipole mo-
ment of the neutron (Peccei and Quinn, 1977b). More broadly, one could then expect
all axion-like particles to have nontrivial couplings to all other fields. In such theories,
self-interactions and/or couplings to other particles are generically present and those
can change the evolution of the superradiant instability. For example, the superradiance
process is expected to be highly suppressed once the self-interactions of the axions be-
come dominant. In the case of axions with a cosine potential V (a) = m2

a f
2 cos(a/fa)

in Equation (11), the self-interactions from the expansion of the potential will lead to
emission of scalar radiation towards infinity and transitions into decaying modes. Thus
one would expect that in some regimes superradiance and energy loss can balance each
other and that the axion cloud enters a coherently oscillating state where the maxi-
mum field value of the cloud, amax, located at the equatorial plane of the Kerr BH at
a radius ∼ 2 rg/α

2, can saturate at around amax ∼ fa (Yoshino and Kodama, 2012;
Baryakhtar et al., 2021). For amax below 1015 GeV, the total mass of the axion cloud
is less than 1% of the BH mass for α > 0.1. Constraints from spin measurements
as discussed in Sec. 4.2 do not apply any more since the extraction of the rotation
energy can be considerably slowed down (Baryakhtar et al., 2021). However, one can
still expect to see signatures of the ultralight axion if it couples to the visible sector,
for example through axionic couplings to photons:

Lint = gaγaFµν F̃
µν/2 , (18)

where Fµν ≡ ∇µAν −∇νAµ is the field strength tensor of photons, F̃µν is its dual,
and gaγ is the axion-photon coupling. Once this coupling is turned on, the oscillating
axion field can periodically rotate the EVPA of the linearly polarised emissions (Carroll
et al., 1990; Harari and Sikivie, 1992). The period of such oscillations is approximately
the inverse of the axion mass and may be written as:

T ≃ 2π

ma
= 4× 105

(
10−20 eV

ma

)
seconds, (19)

with small corrections dependent on α (Dolan, 2007; Brito et al., 2015b). Using the
equations of covariant radiative transfer in a local frame to take into account the
plasma and curved spacetime effects, the axion effect in a local frame is equivalent to
adding a term in parallel with the plasma-induced Faraday rotation ρFR

V , i.e., ρV =



Fundamental Physics Opportunities with the ngEHT 47

ρFR
V − 2gaγ da/ds, where s is the proper time and the second term is proportional to

the gradient of axion field along the line-of-sight (Chen et al., 2022a,b). The shift of
the EVPA is independent of the photon frequency, which can be distinguished from
the astrophysical Faraday rotation. Since the superradiantly-grown axion cloud has
angular momentum, the variations of the EVPA behave as a propagating wave along
the photon ring for a nearly face-on BH (Chen et al., 2020).

An illustration of the EVPA variations around M87* is shown in the left panel of
Figure 16, where different colors of the quiver lines represent separate oscillation phases
within one period. Using the four days of polarimetric measurements of M87* in 2017
(EHT Collaboration, 2021a), one can already constrain the dimensionless axion-photon
coupling c ≡ 2πgaγ fa to previously unexplored regions (Chen et al., 2022b), which is
shown on the right panel of Figure 16. The upper bound on the axion mass window
is determined by the spin of the BH via the superradiant condition and two examples
of spins are shown. The lower bound is required to have a superradiant rate timescale
much shorter than the age of the Universe.

The fidelity of mm/sub-mm VLBI polarization maps is limited primarily by the
ability to reconstruct unknown station-based calibration factors, e.g., complex sta-
tion gains and polarimetric leakages. Closure traces are polarimetric closure quantities
defined on station quadrangles which are (by construction) insensitive to linear station-
based corruptions of the coherency matrix, extending the more familiar closure phases
and closure amplitudes (Broderick et al., 2020b). Conjugate closure trace products
(CCTPs) are combinations of closure traces that are sensitive exclusively to polariza-
tion, being unity otherwise, and are therefore providing direct, non-imaging evidence
for complex polarization structures (see, e.g., Figure 13 of EHT Collaboration, 2021a).
The time-variable EVPA evolution produced by light axion clouds about M87* and Sgr
A* results in time-variable excursions of the CCTP phase. Estimates based on the 2017
M87* EHT observations suggest that over a single observing campaign, the EHT can
easily constrain the degree of axion-induced EVPA rotations to 2◦ for α ≃ 0.4 (Wang
and Broderick, 2023), similar to the limits presented in Chen et al. (2022b). With its
considerably larger bandwidth and number of available quadrangles, the ngEHT should
be able to improve these limits by nearly two orders of magnitude, detecting EVPA
fluctuations as small as 0.05◦ using CCTP phases alone (Wang and Broderick, 2023).

The robustness of the superradiant phase is essential for the existence of a saturated
axion cloud and thus the constraints. The gravitational perturbation is hard to prevent
the build-up process since the rotating SMBH dominates the gravitational potential.
The parametric instability of the axion to photons (Ikeda et al., 2019; Boskovic et al.,
2019; Spieksma et al., 2023) will be kinetically suppressed by the effective photon mass
in the presence of plasma that is much higher than the axion mass. The conversion
of axion and magnetic fields to electric fields that can heat the plasma is also highly
suppressed.

For the ngEHT, one can increase the sensitivity by correlating the different data
sets of the EVPA variations by a factor of the square root of the number of data sets
(Chen et al., 2022a). Simultaneous correlation of EVPA variations at three different
frequencies can increase the statistics or falsify suspicious signals. Correlations of az-
imuthal EVPA at different radii from the BH center require the angular resolution to
be ∼ 10 µas and the dynamic range of linear polarization to be above 100. More se-
quential observations and higher time cadence also bring more statistics. On the other
hand, emissions that reach the sky plane simultaneously and originate from different
emission points where the axion field oscillates at different phases can potentially wash
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Fig. 16 Left panel: illustration of a covariant radiative transfer simulation (ipole) of the
polarised emission from a Kerr BH surrounded by an axion cloud. Different colors on the
EVPA quivers, which range from red through to purple, represent the time variation of the
EVPA in the presence of the axion-photon coupling. White quivers are the EVPAs when the
axion field is absent. The intensity scale is normalized so that the brightest pixel is unity.
Right panel: the upper limit on the axion-photon coupling (Chen et al., 2022b), characterized
by c ≡ 2πgaγ fa, derived from the EHT polarimetric observations of SMBH M87⋆ (EHT
Collaboration, 2021a) and prospect for ngEHT (Chen et al., 2022a). The bounds from other
astrophysical observations assuming fa = 1015 GeV are shown for comparison.

out the axion-induced EVPA oscillation, especially for lensed photons that orbit around
the BH several times. At 86 GHz these lensed photons contribute less and the ampli-
tude of the EVPA oscillations becomes larger. EVPAs observed at larger radii from the
photon ring without the contamination of lensed photons should produce larger and
more robust predicted signals.

The time variability of the accretion flow will lead to EVPA variations at each point
in the sky plane. To suppress such turbulent behavior, Chen et al. (2022b) introduced
the differential EVPA in the time domain, the difference between two sequential ob-
servations in the data, in order to test axion-photon couplings. The price to pay is a
suppressing factor of sin (ωtint/2), where tint is the interval time between two sequen-
tial observations. For longer axion oscillation periods it provides a smaller value, which
suppresses the sensitivity at lower axion masses on the right panel of Figure 16. On the
other hand, such time variability of the EVPA can be modeled as a kind of noise using
GRMHD simulations or extracting from a turbulent field (Lee and Gammie, 2021).
Thus one can expect to get rid of the suppression factor in the future with the ngEHT.

In the right panel of Figure 16, we also give the prospective sensitivity of the
ngEHT to the axion-photon coupling (Chen et al., 2022a). There are two aspects con-
tributing to the enhancement of the sensitivity: the removal of the suppression factor,
sin (ωtint/2), after a more sophisticated understanding of the accretion flow’s varia-
tions, and an increase in number of data sets. Reasonable expectations include ten
times the observation time, five different radii from the BH center for the EVPA, and
three different frequencies. We also take into account a larger radial wave-function in
the equatorial plane of the BH. In the high mass region, the lowest possible value
of cmin = αEM can potentially be covered, where αEM is the electromagnetic fine-
structure constant.

Non-superradiantly-produced axions could also exist around SMBHs as a compo-
nent of dark matter, contributing to birefringence signals as well. Field profiles of axion
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dark matter could be described by soliton cores in the centers of galaxies (Yuan et al.,
2021) or gravitational atoms bound to the SMBHs (Gan et al., 2023). The excellent
angular resolution of the ngEHT will again help to resolve the coherent oscillating
EVPA variations from different points in the sky plane.

4.5 Open issues

In this section we discuss a number of open issues related to other interactions and
how astrophysical environments can affect the superradiant instability and affect some
of the observables mentioned above.

4.5.1 Other types of interactions

In addition to the axion-photon coupling discussed in Sec. 4.4, various types of ultra-
light bosons can interact differently with standard model particles, leading to corre-
sponding oscillatory parameters in the standard model. Testing variations of funda-
mental constants in the strong gravity region, such as near a SMBH, can therefore test
the existence of ultralight bosons. A CP-even scalar, often called a dilaton, can couple
to the Lagrangian density of the standard model. The two main consequences of this
are shifts in αEM from ϕFµνF

µν/Λγ , and in the mass of a fundamental fermion, ψ,
from ϕmψψ̄ ψ/Λψ, where ϕ is the dilaton field, mψ is the fermion’s rest mass, and
Λγ and Λψ are the cut-off energy scales of the two couplings.

Measuring the fine-structure constant αEM usually requires spectroscopic observa-
tions. For example, comparing absorption lines from S-stars around Sgr A* can test
variations of αEM between the star and the Earth (Hees et al., 2020) and constrain
the ultralight boson’s couplings (Yuan et al., 2022). The fluorescent iron Kα line from
X-ray observations can also potentially constrain its value near the innermost stable
circular orbit (ISCO) (Bambi, 2014). The frequency bands of the EHT and the ngEHT
can, in principle, observe molecular lines, but they can only exist far away from the
SMBH with lower temperatures compared to the horizon-scale plasma.

Similarly, spectroscopic observations can constrain the ratio between the electron
and proton mass (Murphy et al., 2008), which is influenced by the oscillations of the
dilaton. In addition, the value of the electron-to-proton mass ratio can be set freely
in GRMHD simulations, which could be used to study potential imprints of dilatonic
couplings in the plasma.

A vector boson cloud that kinetically mixes with electromagnetic photons through
couplings of the form ϵFµνX

µν can heat up the plasma (Caputo et al., 2021), where
ϵ is the kinetic mixing coefficient. Predictions of the phenomenological consequences
require detailed studies, for example, through GRMHD simulations. In addition, the
dense vector cloud may produce time-oscillating electromagnetic signatures, with fre-
quencies much larger than the vector boson mass, arising from Compton-like scattering
of photons with the electrons in the plasma (Caputo et al., 2021).

Compared with terrestrial searches for ultralight boson dark matter, the signals
from a bosonic cloud can be much more significant due to the large field value that can
be attained in the cloud. Using a Newtonian approximation and hydrogenic wavefunc-
tions, the field values for a scalar and a vector cloud at the superradiant ground state
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are related to the total cloud mass by

MB

MBH
≈


0.5%×

(
ϕ0

1016 GeV

)2 (
0.4

α

)4

,

0.8%×
(

X0

1017 GeV

)2 (
0.4

α

)4

,
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where ϕ0 and X0 are the maximal field values of a scalar and a vector cloud, respec-
tively. Thus a cloud with 10% mass of the BH can have a significant field value up
to the grand unification scale. Therefore we expect that the ngEHT could be used to
constrain or detect the different couplings mentioned above. However, further work is
needed to fully assess the detectability of these type of interactions.

Finally, significant field values and their interactions with matter fields can lead to
an enhanced production of matter within a cloud. A pertinent example is the interac-
tion between a scalar cloud and Standard Model neutrinos (Chen et al., 2023b). The
substantial scalar field value within the cloud facilitates the generation of a significant
number of neutrinos parametrically, akin to the mechanism observed during the pre-
heating phase in the early universe (Greene and Kofman, 1999, 2000). Furthermore,
spacetime variations in bosonic fields contribute to the acceleration of neutrinos (Chen
et al., 2023b). The extended oscillation period of bosons surrounding M87* results in
cyclic neutrino fluxes characterized by an angular preference, particularly within the
polar angle region. Given the potential of the ngEHT to identify a diverse range of
SMBHs and measure their masses and spins, joint observations involving the ngEHT
and high-energy neutrino observatories stand to effectively constrain a wider spectrum
of scalar masses. Notably, the joint observation approach also enables the identification
of astrophysical neutrino backgrounds originating from blazars (Kovalev et al., 2023).

4.5.2 Parametric instability of axion clouds

An important question is whether we understand well enough how couplings of ultra-
light bosons with Standard Model particles affect the evolution of the superradiant
instability and how taking all the effects into account can affect the observations.
For example, Ikeda et al. (2019) considered as a starting point the action (11) with
V (a) = m2

a |a|2/2, describing a real massive (pseudo)scalar field with axionic couplings
to the electromagnetic field in Equation (18). They found that above some critical value
for the coupling constant gaγ , axionic clouds around BHs can transfer an important
fraction of their energy to the electromagnetic field due the development of a para-
metric instability. Their results can be translated into a maximum mass MB that the
cloud can reach:

MB

M
∼
(

0.1

Mµ

)4 (
2× 10−17 GeV−1

gaγ

)2

. (21)

An important question is therefore how much of this phenomenology is important and
whether plasma couplings can quench the instability due to the modified dispersion of
electromagnetic waves in a plasma medium. This was partially studied in Sen (2018)
and Boskovic et al. (2019). Considering the case of a cold plasma, the plasma frequency
is given by:

ωp =

√
4πnee2

me
≈ 10−13

( ne
10−4 cm−3

)1/2
eV , (22)
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with me, e and ne denoting the mass, charge and number density of the free electrons,
respectively. Taking ne ∼ 104 – 108 cm−3 from EHT observations of M87* (EHT
Collaboration, 2021b), photons attain an effective mass of around 10−9 – 10−7.5 eV,
which is much higher than the relevant axion masses ∼ 10−21 eV. Thus, one should
expect the parametric instability to be highly suppressed.

There are, however, some caveats to this simplistic argument that warrant further
study. For example, Sen (2018) showed that there can still be a small instability window
at large couplings gaγ whenma is much smaller that the plasma frequency. In addition,
these analysis were done using a flat-space approximation and treating the interaction
of the electromagnetic field and the plasma as simply giving the photon an effective
mass, which might not be a good approximation to describe these systems (see, e.g.,
Cardoso et al., 2021b; Cannizzaro et al., 2021a,b). It is also known that non-linear
plasma effects can open a transmission window in plasmas (Cardoso et al., 2021b)
which could therefore allow the parametric instability to develop. Understanding how
all these effects affect the superradiant instability is a challenging task, but one which
is important to pursue.

4.5.3 Plasma heat-up from axion clouds in a magnetic field

In addition to the parametric instability discussed above, another important question is
whether, in the presence of a background magnetic field and axion-photon couplings,
the axion cloud can sufficiently heat up electrons/positrons/ions so as to terminate
the superradiance process before the BH spins down or the field saturates the self-
interaction limit. A similar process happens, for example, due to the kinetic mixing of
dark photons with (normal) photons (Caputo et al., 2021).

To understand this problem using a flat-space approximation, it is useful to write
the equations of motion for both the transverse electromagnetic field AT and the axion
field a in the presence of a background magnetic field B0 in terms of Fourier modes:{

k⃗2 − ω2 +

(
Ω2
p ωgaγB0

ωgaγB0 m2

)}(
AT
a

)
= 0 , (23)

where Ω2
p ≡

ω2
p

1 + iν
ω

and:

ν =
4
√
2πα2ne

3m
1/2
e T

3/2
e

logΛC ≈ 3× 10−21eV
( ne
0.04 cm−3

)(8000 K

Te

)3/2

, (24)

is the electron-ion collision rate contributing to the friction in the plasma. We can then
solve Equation (23) to obtain the dissipation rate of the axion field in the plasma:

γIa =
g2aγ B

2
0 ν

2ω2
p

. (25)

Again taking EHT observations of M87* as an example, where it was found that ne ∼
104–108 cm−3, B0 ∼ 1–30 G and Te ∼ (1–12)×1010 K (EHT Collaboration, 2021b),
the dissipation rate of the axion field due to the heating up of the plasma is roughly:

γIa ∼ 10−53
( gaγ

10−12 GeV−1

)2
eV , (26)
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in the non-relativistic limit |⃗k| ≪ ω (in this limit the result applies to the longitudi-
nal mode of the photon as well). This is too small to stop superradiance. Whilst we
employed a flat-space approximation, one expects that strong gravity effects will not
change this picture considerably, although further studies are necessary to assess this.
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5 Tests of GR and the Kerr hypothesis with the ngEHT

BHs in GR unavoidably harbor unphysical curvature singularities (Penrose, 1965;
Hawking, 1966; Penrose, 1969; Hawking and Penrose, 1970; Penrose, 1972; Hawking
and Ellis, 2011; Senovilla, 1998; Senovilla and Garfinkle, 2015). The question is there-
fore not if GR and the Kerr hypothesis break down, but rather how and where this
break down occurs.

There is consensus that trans-Planckian curvature scales are governed by an as of
yet unknown quantum theory of gravity which modifies the core of a BH (Ashtekar and
Bojowald, 2005; Bojowald, 2007; Ellis et al., 2018). However, quantum-gravity effects
may affect the structure of BH spacetimes at much lower curvature scales and even
structure outside the horizon (Frolov and Vilkovisky, 1979, 1981; Hájíček, 1987, 2001,
2003; Ambrus and Hájíček, 2005; Almheiri et al., 2013; Barceló et al., 2014; Rovelli
and Vidotto, 2014; Barceló et al., 2015; Haggard and Rovelli, 2016; Barceló et al.,
2016; Giddings and Psaltis, 2018; Giddings, 2019; Bacchini et al., 2021; Eichhorn and
Held, 2022). Furthermore, matter (itself potentially non-minimally coupled) within
GR may form exotic compact, supermassive objects which could be found at the cores
of galaxies (see Sec. 4). Finally, classical modifications of GR, i.e., so-called modified
gravity theories, are being investigated (some motivated by questions in cosmology)
and may contain BH solutions that differ from Kerr (see Sec. 5.1.1 as well as Berti
et al., 2015; Cardoso and Pani, 2019, for reviews). In view of these many distinct
theoretical possibilities, an observational program which pushes as far as possible into
the strong-gravity/near-horizon regime is called for, in order to place constraints on
theoretical proposals or even discover a deviation from GR.

The astrophysics challenge
A critical challenge for this program is set by the astrophysical environment of a SMBH:
the Kerr hypothesis already technically breaks down for astrophysical BHs, since the
Kerr solution is strictly a vacuum solution (Kerr, 1963; Newman and Janis, 1965;
Newman et al., 1965; Bekenstein, 1972; Robinson, 1975; Chrusciel et al., 2012), yet
SMBHs exist within an astrophysical environment typically composed of an accretion
disk and relativistic jet outflows. This astrophysical environment is only partially un-
derstood, introducing a systematic uncertainty in the comparison between data and
theory. Within GR a large body of literature is already devoted to an ever improving
understanding of the accretion disk physics and the resulting observational images. Be-
yond GR it is a key outstanding challenge to achieve a commensurate level of control
over the systematic uncertainties introduced by a BH’s astrophysical environment.

Searching for a breakdown of GR vs testing modified gravity
There are two questions that we aim to answer with ngEHT observations. First, we ask
whether GR fails, and second, we ask whether a modified theory of gravity performs
better at explaining the observational data.

Within GR, there are clear predictions for the image of a BH (depending on the
accretion disk properties). Exploring whether the observational data agrees with this
expectation tests whether or not GR fails for this observation. Knowledge of theoretical
predictions beyond GR is unnecessary for such a test.

Beyond GR, predictions for the image of a BH (or a horizonless spacetime) exist in
part. Where they exist, it is possible to ask whether the given theory performs better
than GR at explaining the data. It is our aim to ask this question as comprehensively
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as possible. Controlling the systematic uncertainties arising from a BH’s astrophysi-
cal environment is essential to accomplish this task. Thus, we aim at completing the
following program.

Confronting ngEHT observations with theoretical predictions
To compare predictions of modified theories of gravity with those of GR, we have
to complete the following steps: (i) investigate the theoretical properties of ob-
jects/spacetimes beyond GR, in particular their shadows, (ii) examine images of these
objects/spacetimes as they appear when illuminated by an accretion disk, and (iii)
account for the capabilities of the ngEHT array.

We summarize progress on this program in several scenarios beyond GR in Sec. 5.1 and
find that step (i) has already been completed for many objects/spacetimes beyond GR,
where the critical curve (shadow boundary) has been calculated. This includes: gravity
with Chern-Simons terms (Amarilla et al., 2010; Okounkova et al., 2019), Gauss-Bonnet
gravity (Guo and Li, 2020; Konoplya and Zinhailo, 2020; Kumar and Ghosh, 2020; Wei
and Liu, 2021), gravity coupled to nonlinear electrodynamics (Allahyari et al., 2020b),
scalar-vector-tensor gravity (Moffat, 2015; Wang et al., 2019), tensor-vector gravity
(Vetsov et al., 2018), braneworld settings (Amarilla and Eiroa, 2012; Eiroa and Sendra,
2018), Kaluza-Klein BHs (Amarilla and Eiroa, 2013), BHs inspired by asymptotically
safe gravity (Held et al., 2019) and Loop Quantum gravity (Liu et al., 2020), regular
BHs (Abdujabbarov et al., 2016; Amir and Ghosh, 2016; Tsukamoto, 2018; Stuchlík
and Schee, 2019), naked singularities (Abdikamalov et al., 2019; Kumar et al., 2020b)
and wormholes (Gyulchev et al., 2018; Brahma et al., 2021; Bouhmadi-López et al.,
2021). See also Perlick and Tsupko (2022); Vagnozzi et al. (2023). These constraints
have been derived through comparing the diameter of the critical curve obtained from
theoretical considerations with the observational measurements of the diameter of the
shadow image. We refer to these as projected constraints: they provide an estimate of
the parameter ranges that an (ng)EHT array may constrain, once simulated images go
beyond the critical curve and account for the presence of an accretion disk.

In fact, step (ii) has been partially achieved for some settings beyond GR, where
most studies are limited to simple models of accretion disks (Shaikh et al., 2019b; Liu
et al., 2021; Zeng et al., 2020; Bauer et al., 2022a; Dong et al., 2022a; Eichhorn and
Held, 2021b; Gyulchev et al., 2021; Daas et al., 2022a) and a more limited number of
covariant MHD simulations (Mizuno et al., 2018a; Olivares et al., 2020; Röder et al.,
2022; Chatterjee et al., 2023b,c) are available. Step (iii) has only been achieved for
very few settings (Vincent et al., 2021; Eichhorn et al., 2022a). Therefore, different
theoretical scenarios are in different stages of development when it comes to readiness
for comparison with actual observational data.

We then take a different approach and condense all these beyond-GR scenarios
down to three general signatures which can be parametrically constrained. In Sec. 5.2
we discuss the resulting science cases with respect to the capabilities of the ngEHT.

Relations between ngEHT and other observational constraints
There are several observational programs that are currently making significant progress
in constraining deviations from GR, most notably GW measurements (Abbott et al.,
2017a,b,c, 2021a,b; The LIGO Scientific Collaboration et al., 2021). Their relation to
ngEHT constraints is subject to two considerations. First, because GWs arise in the
dynamical regime of a gravity theory, they can be challenging to simulate beyond GR,
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such that a waveform catalogue that enables tests of modified-gravity theories is not
yet available. In contrast, the ngEHT accesses the (mostly) stationary regime of the
spacetime, where one only requires (spinning) stationary solutions of modified-gravity
theories. Second, current constraints on deviations from GR from GW observations do
not necessarily apply to SMBHs: unless BH uniqueness theorems hold, constraints on
the metric of roughly solar-size BHs do not constrain the metric of SMBHs.

5.1 Scenarios for physics beyond GR

In Sec. 5.1.2, we turn to specific spacetimes and compact objects. We discuss various
scenarios which: arise from quantum fluctuations, are motivated by quantum gravity,
or feature violations of cosmic censorship.

Here, we review physics scenarios beyond GR and the resulting violations of the
Kerr hypothesis, according to how it is circumvented. The ngEHT may also provide
insight into particle physics beyond the Standard Model. Such new-physics effects typ-
ically involve minimally coupled exotic matter, and were discussed separately in Sec. 4.
In Sec. 5.1.1 we discuss classical and quantum theories of modified gravity, including
non-minimally coupled matter fields and effective field theory. In Sec. 5.1.2 we turn
to specific spacetimes and compact objects: we discuss various scenarios which arise
from quantum fluctuations, are motivated by quantum gravity, or feature violations of
cosmic censorship.

In each subsection, we briefly summarize the theoretical motivation and observa-
tional status of the physics scenario beyond GR. We then summarize the state-of-the-
art with respect to VLBI imaging, to point out where additional work is necessary
to achieve readiness for future comparison with data. This includes, in particular, the
question of whether potential ngEHT signatures have been studied in idealized scenar-
ios or in more realistic settings which take into account astrophysical uncertainties and
limitations in instrument capabilities.

We remain agnostic as to the theoretical viability of these scenarios. Instead, we
take the point of view that observational constraints should guide the search for physics
beyond GR.

5.1.1 Modified gravity

The assumption that AGNs are supermassive Kerr BHs rests on the field equations of
GR, although the Kerr metric is also a solution of some theories beyond GR, e.g., if
the action contains no Riemann invariants (Psaltis et al., 2008; Barausse and Sotiriou,
2008). The EFEs can be taken to follow from a theorem by Lovelock (1971). The
theorem, in turn, relies on several assumptions and physics beyond GR, which may
lead to alternative paradigms for AGNs and can be classified by how the theorem is
circumvented (see, e.g., Pani et al., 2013; Berti et al., 2015). In particular, the theorem
assumes: (i) spacetime is a differentiable manifold endowed with a metric, (ii) four
spacetime dimensions, (iii) diffeomorphism symmetry, (iv) a local action principle, (v)
equations of motion with (at most) second-order time derivatives, (vi) no gravitational
degrees of freedom beyond the massless graviton, and (vii) no non-minimal coupling.

Assumption (i) is violated in many (although not all) approaches to quantum grav-
ity. For instance, this gives rise to the fuzzball paradigm, see Sec. 5.1.2 in string theory.
Nevertheless, many approaches to quantum gravity work with an effective spacetime
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metric, that is constructed at a phenomenological level, e.g., in Loop Quantum Grav-
ity (Ashtekar and Bojowald, 2006), or non-commutative spacetimes4. For BHs, this
effective metric is typically regular (see Sec. 5.1.2).

In general, it is expected that at sufficiently low curvature scales, quantum ef-
fects can be captured in an effective action, even if the UV theory goes beyond the
spacetime setting. Within approximations, this effective action is (partially) known,
e.g., in string theory (Gibbons and Maeda, 1988; Garfinkle et al., 1991; Sen, 1992),
asymptotically safe quantum gravity (e.g., Bonanno et al., 2020) and causal dynamical
triangulations (e.g., Loll, 2020). At this level, quantum and classical theories can be
treated on the same footing.5

In the following, we review how different modifications violate the assumptions of
Lovelock’s theorem and discuss the state of maturity of different studies of BH shadows
in these various settings.

In settings with extra dimensions, the solutions with an event horizon (see Emparan
and Reall, 2008, for a review), can be projected onto four-dimensional spacetime, in
which they appear as four-dimensional BHs with a modified line element. Modifications
to the critical curve have been investigated (Amarilla and Eiroa, 2012; Papnoi et al.,
2014; Singh and Ghosh, 2018; Amir et al., 2018; Long et al., 2019) and projected
constraints have been obtained using EHT results (Banerjee et al., 2020; Vagnozzi
and Visinelli, 2019).

Projected constraints on theories with violations of Lorentz-invariance (or more
generally diffeomorphism symmetry, e.g., Barausse et al., 2011) have been obtained
in Ding et al. (2020), Khodadi and Saridakis (2021), Vernieri and Sotiriou (2012), and
Sotiriou et al. (2014). Moreover, they have been found to exhibit a nested structure
for trapping horizons as a function of the frequency of the photons that follow the
null geodesics (Carballo-Rubio et al., 2022b). It is an open question as to whether
the same statement holds for the photon sphere. If that is indeed the case, tests of
achromaticity of the emission ring could constrain violations of Lorentz invariance in
gravity. Such Lorentz-invariance violations are already strongly constrained by other
observations (e.g., Emir Gümrükçüoğlu et al., 2018; Gupta et al., 2021).

In a four-dimensional diffeomorphism-invariant setting, one can circumvent the
Lovelock theorem by modifying the action. A restriction to second-order field equations
ensures the absence of potential (Ostrogradski) ghost instabilities and significantly
constrains the allowed set of interactions. The converse is not true: if the equations are
higher than second order, the theory does not automatically have ghost instabilities.

General theories of ghost-free interactions between gravity and a scalar, so-called
scalar-tensor theories (Horndeski, 1974; Deffayet et al., 2011), between gravity and a

4 See (Vagnozzi et al., 2023) for projected constraints on non-commutativity derived by
confronting calculations of the critical curve with observations

5 One may expect that quantum-gravity effects are generically tied to higher curvature
scales than classical modifications of GR. However, this expectation has been challenged in,
e.g., Frolov and Vilkovisky (1979, 1981); Hájíček (1987, 2001, 2003); Ambrus and Hájíček
(2005); Almheiri et al. (2013); Barceló et al. (2014); Rovelli and Vidotto (2014); Barceló et al.
(2015); Haggard and Rovelli (2016); Barceló et al. (2016); Giddings and Psaltis (2018); Gid-
dings (2019); Bacchini et al. (2021); Eichhorn and Held (2022). Equating the scale of quantum
gravity to the Planck scale is, in fact, a simple dimensional estimate which does not use any
information whatsoever on the gravitational dynamics. It may thus not do justice to the actual
theory of quantum gravity which may, e.g., (i) not follow naturalness arguments and have a
scale different from the Planck scale, or (ii) have several dynamical scales.
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vector, so-called vector-tensor theories (Heisenberg, 2014; de Rham and Pozsgay, 2020),
and between gravity and a second (potentially massive) tensor mode, so-called bimetric
or massive gravity theories (de Rham et al., 2011; Hassan and Rosen, 2012), have
been constructed with second-order equations of motion. Theories with higher-order
equations of motion but without Ostrogradski instability include infinite-derivative
gravity (Biswas et al., 2006; Modesto, 2012; Biswas et al., 2012). Theories with higher-
order equations of motion include, e.g., Stelle’s higher derivative gravity (Stelle, 1978),
in which spherically-symmetric BH solutions have been found numerically (Lu et al.,
2015; Podolský et al., 2020). In this theory, BHs with small enough horizon suffer from
a classical long-wavelength instability (Brito et al., 2013; Held and Zhang, 2023).

Such theories with higher-order equations of motion can also be interpreted as the
leading-order terms in an effective field theory (EFT) (Endlich et al., 2017; Cardoso
et al., 2018b; de Rham et al., 2020), which may, for instance, arise from integrating out
quantum fluctuations in a quantum theory of gravity. An EFT includes interactions
order-by-order and is only valid up to a cutoff scale at which interactions of yet higher
order can no longer be neglected. In the EFT (some of) the additional degrees of
freedom, associated instabilities, and the new BH branches, may thus be an artefact
of extrapolating the EFT beyond its regime of validity.

The existence of a (perturbative) EFT parameter can facilitate the order-by-order
extension of some of the properties/theorems of GR to larger classes of modified-gravity
theories, e.g., Xie et al. (2021) for the example of circularity. In these settings, more
image features are likely to be shared between GR and the beyond-GR theory.

Black-hole uniqueness and ngEHT prospects
Beyond GR, BH uniqueness may be violated (Sotiriou and Faraoni, 2012). Kerr BHs
remain a solution of a subclass of these theories (see, e.g., Ben Achour and Liu, 2019;
Motohashi and Minamitsuji, 2019). Generically, if curvature invariants built from the
Riemann tensor are absent in the action, it is straightforward to show that solutions of
GR remain solutions (Psaltis et al., 2008; Barausse and Sotiriou, 2008). This includes
a large class of nonlocal theories of gravity (Li et al., 2015). Such theories can therefore
be more challenging to constrain with the EHT. Other modifications deform Kerr
BHs (Yunes and Pretorius, 2009; Yunes and Stein, 2011; Yagi et al., 2012; Herdeiro
and Radu, 2014, 2015b; Silva et al., 2018; Ayzenberg and Yunes, 2018) and/or admit
additional BH branches (Lu et al., 2015; Podolský et al., 2020).

If BH uniqueness holds, all astrophysical constraints on modifications of GR at
different scales (Yunes and Siemens, 2013; Will, 2014; Berti et al., 2015) should be
accounted for. For modifications which are tied to local curvature scales, the EHT
and ngEHT probe a regime which is already constrained by GW and Solar System
observations (Glampedakis and Pappas, 2021). If BH uniqueness is violated, the ngEHT
is uniquely positioned to test modifications of GR on scales associated with AGNs.

Spherically-symmetric black holes and VLBI observations
Most of the known explicit BH solutions in modified gravity are restricted to spherical
symmetry. For many of these, spherically-symmetric deviations in the critical curve
have been quantified (Ayzenberg and Yunes, 2018; Allahyari et al., 2020b; Konoplya
and Zhidenko, 2019; Konoplya et al., 2020; Shaikh, 2019; Zhu et al., 2019; Islam et al.,
2020; Khodadi et al., 2020; Konoplya and Zinhailo, 2020; Kumar et al., 2020a; Guo
and Li, 2020); see also Perlick and Tsupko (2022) for a recent review.
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In spherical symmetry, there is a degeneracy between modified-gravity effects and
the mass-to-distance ratio of a given BH (Kocherlakota and Rezzolla, 2022). A second
independent mass measurement is required to break this degeneracy. Moreover, all
deviations in the critical curve are degenerate across all the different modified theories of
gravity (Kocherlakota et al., 2021; Vagnozzi et al., 2023). Breaking at least some of this
degeneracy is achievable using finite-order lensing features such as photon rings (e.g.,
Wielgus, 2021; Kocherlakota et al., 2023).

A much smaller set of theories has been investigated by the use of disk models
and resulting photon rings, which includes theories in which a scalar field couples
to the Gauss-Bonnet or the Pontryagin invariant (Zeng et al., 2020; Bauer et al.,
2022a), as well as Stelle’s higher-derivative gravity (Daas et al., 2022a). Modifications
of the emission spectrum and the Blandford-Znajek process have been investigated
by Liu et al. (2021) and Dong et al. (2022a), respectively. Even less is known about
full (GR)MHD simulations which have been performed for Einstein gravity coupled
to additional matter fields in Mizuno et al. (2018a) and Röder et al. (2022). More
recent (GR)MHD simulations of spinning (axisymmetric) BHs have been performed in
Chatterjee et al. (2023b,c). In general, degeneracy is expected between modifications
of the spacetime and properties of the astrophysical environment, making such studies
critical. In particular, it may be the case that the projected constraints are overly
optimistic. Marginalizing over astrophysical parameters may significantly weaken the
constraints (Cardenas-Avendano et al., 2019).

Spinning black holes and VLBI observations
Spinning BHs beyond GR have been constructed with the Janis-Newman algorithm
(Janis et al., 1968). See Capozziello et al. (2010); Modesto and Nicolini (2010); Bambi
and Modesto (2013); Azreg-Aïnou (2014); Toshmatov et al. (2014); Kumar and Ghosh
(2020); Wei and Liu (2021) for examples. We note that it is not generally expected that
the Janis-Newman algorithm is valid in modified-gravity theories (Drake and Szekeres,
2000; Hansen and Yunes, 2013).

In some theories, BH solutions have been explicitly extended to the case of slow
spin (Yunes and Pretorius, 2009; Cano and Ruipérez, 2019). Some axisymmetric solu-
tions have been numerically constructed for arbitrary spin (Kleihaus et al., 2011, 2016;
Fernandes and Mulryne, 2022) but full analytical solutions are not yet known. In the
few cases in which spin has been explored, there is no hidden (Carter-like) constant
of motion (Owen et al., 2021). Moreover, some theories can break reflection symmetry
about the equatorial plane (Cardoso et al., 2018b; Cano and Ruipérez, 2019; Chen and
Yang, 2022), and others can break circularity (Ben Achour et al., 2020), cf., Sec. 5.2.2.
It remains an important open question as to how far (some of) these properties can be
tied to generic image features.

Open challenges
The open challenges to further quantify the constraining power of the ngEHT for
modified gravity theories are as follows.

• Go beyond spherical symmetry in solutions to modified theories of gravity and
account for spin – this will allow breaking of degeneracy in the Kerr mass and
potentially even between different modifications.
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• Determine which modified-gravity theories break BH uniqueness and admit (stable)
non-Kerr BH branches – this identifies a class of theories for which Solar System
and GW constraints need not apply.

• Go beyond calculations of the critical curve and instead simulate images, using
simple disk models in a first step, and full GRMHD simulations, ideally including
polarization and frequency dependence, in a second step.

• Understand degeneracies between modifications of GR and properties of a BH’s
astrophysical environment.

5.1.2 Specific spacetimes and compact objects beyond GR

In addition to the explicit BH solutions in modified gravity (see Sec. 5.1.1), several
classes of spacetimes have been motivated by theoretical considerations both in and
beyond GR.

Exotic compact objects from semi-classical physics
Gravastars (Mazur and Mottola, 2001, 2004; Cattoen et al., 2005; Chirenti and Rez-
zolla, 2007) are expected to form if quantum fluctuations become so sizable during
gravitational collapse that they trigger a phase transition to spacetime regions with an
effective stress-energy tensor which violates energy conditions. The viability of such a
formation mechanism is debated in the literature (Chen et al., 2018). After formation,
the resulting stationary spacetime is effectively described by several radial shells with
distinct effective stress-energy tensors.

In the simplest effective gravastar geometries (Visser and Wiltshire, 2004), an exte-
rior asymptotically flat vacuum solution to GR is glued to an interior de-Sitter patch.
The interior and the exterior are connected by a thin shell of energy-condition violating
matter which facilitates smooth matching. More recently, gravastars with AdS interior
have been constructed (Danielsson et al., 2017).

Spinning gravastars have been constructed in the slow-rotation limit by perturbing
non-rotating spacetimes (Cardoso et al., 2008; Pani, 2015; Danielsson and Giri, 2018)
and are subject to an ergoregion instability (Friedman, 1978).

Semi-classical relativistic stars have also been proposed as a possible endpoint
of gravitational collapse, being supported by the most elementary form of quantum
pressure provided by gravitational vacuum polarization (Visser et al., 2008; Barceló
et al., 2009; Carballo-Rubio, 2018). As with gravastars, proposals for formation mech-
anisms (Barcelo et al., 2008; Barceló et al., 2016) are only partially understood.

Contrary to gravastars, which have a vacuum core in which the equation of state
is p = −ρ, semi-classical relativistic stars are formed by a delicate energetic balance
between matter and vacuum polarization, and can thus have different equations of
state (Ho and Matsuo, 2018; Arrechea et al., 2021, 2022). Due to technical limitations
in our knowledge of quantum field theory on rotating backgrounds (Ottewill and Win-
stanley, 2000; Zilberman et al., 2022a,b), spinning solutions are still to be obtained.

Regular black holes
In some approaches to quantum gravity (Donoghue, 1994; Reuter, 1998), quantum
fluctuations have been found to weaken the gravitational force, lead to geodesic defo-
cusing, and thus provide a natural mechanism for singularity resolution. Thus, regular
BHs, both spinning (e.g., Reuter and Tuiran, 2011; Bambi and Modesto, 2013; Neves
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and Saa, 2014; Toshmatov et al., 2014; Azreg-Aïnou, 2014; Ghosh and Maharaj, 2015;
Brahma et al., 2021; Mazza et al., 2021; Eichhorn and Held, 2021a; Franzin et al.,
2022) and non-spinning (e.g., Bonanno and Reuter, 2000; Nicolini, 2009; Gambini and
Pullin, 2013; Ashtekar et al., 2018; Platania, 2019; Bodendorfer et al., 2019, 2021a,b),
have been constructed or motivated in multiple approaches to quantum gravity.6

On a more phenomenological level, regular BHs have been put forward in, e.g.,
Dymnikova (1992) and Hayward (2006), and reviewed in Ansoldi (2008). They also arise
as solutions to GR coupled to non-linear electrodynamics (Ayon-Beato and Garcia,
1998). They can also be regarded as a useful paradigm for beyond-GR-spacetimes,
given that they resolve one (of several) problematic aspects of BHs in GR, namely the
curvature singularity (though not necessarily the Cauchy horizon). There are still open
questions regarding their dynamical evolution due to the exponential mass inflation
instability (Brown et al., 2011; Frolov and Zelnikov, 2017; Carballo-Rubio et al., 2018a,
2021; Barceló et al., 2022), which is generic but for a specific set of geometries (Carballo-
Rubio et al., 2022b).

Generically, regular BHs come with (at least) one free parameter that determines
the curvature scale at which deviations from Kerr become sizable (e.g., Held et al.,
2019; Contreras et al., 2020; Kumar et al., 2019; Li et al., 2020; Kumar et al., 2020c;
Kumar and Ghosh, 2021; Kumar et al., 2020b; Eichhorn et al., 2022b). Parameter
values of order 1% in these models lead to O(0.1%) effects at the horizon and cor-
respondingly somewhat smaller effects at the photon sphere and on the shadow (see,
e.g., Kocherlakota et al., 2021; Eichhorn et al., 2022b). Such parameter values arise if
the scale of new physics corresponds to curvature radii of the order of the gravitational
radius, and hence to scales far above the Planck scale. This could be, for instance, a
consequence of the back-reaction associated with mass inflation (Barceló et al., 2022;
Carballo-Rubio et al., 2022).

Key image features of regular BHs (see, e.g., Abdujabbarov et al., 2016; Eichhorn
and Held, 2021b,a; Lima et al., 2021; Islam et al., 2021; Eichhorn et al., 2022b) are: (i)
at fixed mass, the diameter of the critical curve, as well as all photon rings of regular
BHs, is smaller than for a Kerr BH, (ii) the relative photon-ring separation increases,
(iii) at finite spin (and non-face-on inclination), the photon-ring shape deviates from
Kerr and can, in non-circular7 regular BHs, become non-reflection-symmetric about
the horizontal image axis and feature cusps and dents.

Property (i) is testable with the ngEHT, if an additional, independent mass mea-
surement is used, e.g., from stellar orbits. In fact, the EHT observation of M87* already
provides a first constraint on a regular BH with particularly large deviations from Kerr
(Eichhorn et al., 2022b), while other regular BHs remain unconstrained (Kocherlakota
et al., 2021). Property (ii) may be testable for some regular BHs (Eichhorn et al.,
2022b), where estimates show that the separation between n = 1 and n = 2 photon
rings may reach several µas (for a shadow diameter corresponding to that of M87*),
cf., Sec. 5.2.4. Superresolution techniques may be particularly useful to constrain such
regular BHs. Properties (iii) and (iv) are likely beyond the reach of ngEHT, although
studies accounting for finite resolution have not been conducted yet.

6 This is possible within an effective metric setting even in quantum-gravity approaches
where spacetime is not a smooth manifold at high curvature scales (see, e.g., Ashtekar and
Bojowald, 2006; Modesto, 2004, 2006; Hossenfelder et al., 2010; Gambini and Pullin, 2013;
Rovelli and Vidotto, 2014; Ashtekar et al., 2018).

7 The term “circular” here refers to a technical property of the spacetime.
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In addition, the overall lensing structure of these spacetimes differs from Kerr,
therefore a spacetime tomography approach (Broderick and Loeb, 2005, 2006; Tiede
et al., 2020; Wong, 2021) is also likely to provide constraints on regular BHs. Studies of
localized emission regions around regular BHs are, however, currently in their infancy
(Eichhorn et al., 2022b). Further, there may be polarization signatures (Liu et al.,
2022), which is also not yet well-explored.

Fuzzballs
In string theory, BHs are argued to be replaced by an exotic compact object (ECO),
i.e., a fuzzball. Fuzzballs have been motivated by the individual microstates of fluctuat-
ing BH geometries in string theory (Mathur, 2005; Hertog and Hartle, 2020; Mayerson,
2020). For a specific class of five-dimensional extremal BHs, the relevant microstates
have been shown to successfully reproduce the Bekenstein-Hawking entropy (Stro-
minger and Vafa, 1996; Callan and Maldacena, 1996). Some individual microstate ge-
ometries turn out to be regular and horizonless (Balasubramanian et al., 2008). The
fuzzball paradigm conjectures that classical BH geometries are the coarse-grained su-
perposition of these individual microstates. In view of classical instabilities (Keir, 2019;
Cardoso et al., 2014a; Eperon et al., 2016; Marolf et al., 2017), stability remains an
open question. Uncharged, non-supersymmetric, and four-dimensional microstate ge-
ometries of direct relevance for astrophysical BHs are challenging to construct (see
Bah et al., 2021, for a recent construction of charged, four-dimensional, and non-
supersymmetric microstate geometries). The latter break reflection symmetry about
the equatorial plane which suggests an asymmetry in their shadows. Moreover, these
geometries do not exhibit an ergosphere, which poses a challenge with regard to a
viable jet-launching mechanism.

Ray-traced images of the celestial sphere in charged solutions of supergravity inter-
preted as effective fuzzball geometries have been computed in Bacchini et al. (2021).
When a deformation parameter is tuned towards the extremal BH limit, geodesics that
enter the interior of the effective fuzzball geometry encounter increasingly large cur-
vature close to timelike surfaces of infinite redshift. The growing redshift (between an
emission region at high curvature and an observer at asymptotic infinity) has been ar-
gued to increasingly darken the appearance of these effective fuzzball geometries (Bac-
chini et al., 2021). Quantifying this conjectured darkening could provide a route to
constrain the deformation parameter.

Non-hidden wormholes and naked singularities
We refer to non-hidden wormholes as spacetimes with two (or more) asymptotically flat
regions which are not separated by a horizon. Similarly, we refer to naked singularities
as asymptotically flat spacetimes with a curvature singularity which is not hidden by
a horizon. Such objects can even occur as vacuum solutions of GR: for instance, the
Kerr solution itself can describe a naked singularity if the spin parameter exceeds its
extremal value, i.e., |a∗| > 1. Whether or not naked singularities can dynamically form
is connected to cosmic censorship (Wald, 1999). Their physical viability is questioned by
severe theoretical shortcomings such as geodesic incompleteness and/or closed timelike
curves (Morris and Thorne, 1988). Nevertheless, they provide a useful testing ground to
understand the capabilities of an ngEHT array. Non-hidden wormholes also arise from
regular BHs, at sufficiently large values of the regularization parameter. In the limit
of near-critical spin, even Planck-scale modifications of GR can result in a horizonless
spacetime (Eichhorn and Held, 2022).
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Images of naked singularities strongly depend on whether or not they feature a pho-
ton sphere. If they do, they can cast a critical curve that may be similar to that of a BH
and the respective deviations in the critical curve have been quantified (Abdikamalov
et al., 2019; Kumar et al., 2020b; Nguyen et al., 2023). If they do not possess a photon
sphere, there may still be strong-lensing effects, but image features typically appear
more distinct from BHs (Shaikh et al., 2019b). Accretion physics around naked singu-
larities has been investigated in Joshi et al. (2011, 2014), finding potentially detectable
differences in the high-frequency tail of the emission spectrum. Accretion disks around
naked singularities have been investigated in Gyulchev et al. (2019, 2020), Shaikh and
Joshi (2019), and Deliyski et al. (2023).

In distinction to naked singularities, non-hidden wormholes need not contain cur-
vature singularities. In contrast to BHs, they do not feature event horizons, irrespective
of whether or not they have a photon sphere. Discriminating between wormholes and
BHs via VLBI imaging is still not straightforward, at least at present angular resolu-
tions. Indeed, it has been shown that many wormholes have unstable photon orbits and
are able to cast critical curves very similar to BHs, even though in most models the
critical curves have a smaller size than those of BHs with the same ADM mass (Bambi,
2013; Gyulchev et al., 2018; Amir et al., 2019; Brahma et al., 2021; Bouhmadi-López
et al., 2021). One promising signature to probe wormholes from their images is based
on the fact that the observers may see photons falling into the mouth of their side,
then reflected either from the throat or from the potential barrier near the photon
sphere on the other side of the throat. Even the photons directly from the other side
could be detectable. Typically, the combination of these effects would form multiple
light rings inside the dark spot of the image (Shaikh et al., 2019a; Wang et al., 2020;
Wielgus et al., 2020; Peng et al., 2021), see also Delijski et al. (2022) for the effect
of polarization. After blurring due to imperfect resolution, these effects appear as an
overall enhancement of intensity within the dark spot (Ohgami and Sakai, 2015, 2016;
Paul et al., 2020; Vincent et al., 2021; Guerrero et al., 2021; Eichhorn et al., 2022a).
This can be used to distinguish the images of wormholes from those of BHs with an
ngEHT array, even though the EHT may not achieve this.

5.1.3 New-physics effects in light propagation and matter dynamics

Most studies to-date of settings beyond GR account for changes in the spacetime,
but use the standard form of the geodesic equation for ray tracing and, where consid-
ered, GR dynamics for the accretion disk. Going beyond GR, the geodesic equation
can also, in principle, be modified. For instance, it has been known since the seminal
work of Drummond and Hathrell (1980) that quantum effects can modify the propa-
gation of light: quantum fluctuations of charged matter fields, most importantly the
electron, give rise to the Euler-Heisenberg effective action, which exhibits terms that
couple the electromagnetic field strength-tensor to the Ricci scalar, Ricci tensor and
Riemann tensor. Even though for GR BHs, the latter term is negligible; for BHs beyond
GR, Ricci-flatness need not hold and all three terms may be present. Drummond and
Hathrell (1980) found that gravitational lensing in the Schwarzschild metric becomes
polarization dependent through such terms, although of an unmeasurably small amount
for the Solar System – the case may be different for BHs, although a quick estimate
of the type of term, F 2RµνκλR

µνκλ ℏ2

m2
e c

2 , indicates that it remains a tiny correction
to classical electrodynamics even close to the horizon of a supermassive BH. On the
one hand, this particular example, which arises within Quantum Electrodynamics on a
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classical GR background, serves as a reminder that quantum effects, may in principle
modify the propagation of light through a given geometry. Therefore, working with the
standard geodesic equation, as is done in most of the literature, may turn out to be a
restriction on the physics beyond GR. On the other hand, the example highlights that
within quantum field theory on a GR background, such effects are likely completely
negligible. However, there are settings, such as, e.g., regular BHs with large values of
the deviation parameter, in which the new-physics scale is rather low. In such settings,
the new physics may also affect the propagation of matter. Assuming the standard
null geodesic equation when calculating the image of such BHs may thus amount to
a certain amount of tuning, in that the new-physics scales in the geometry and the
matter sector differ from each other.

Besides quantum effects, classical modifications that involve non-minimal coupling
between the electromagnetic field strength and curvature terms may lead to deviations
in the geodesic equation. In Bertolami et al. (2008) it has been shown, however, that
coupling an arbitrary function of the curvature scalar to the matter Lagrangian only
leads to modifications of the massive geodesic equation, not the massless one. Such
terms therefore affect the dynamics of the accretion disk, but not the propagation of
photons. As a second example, Allahyari et al. (2020a) consider a Horndeski coupling
between photons and curvature and perform a parametric estimation of effects on the
BH shadow, from which they constrain the corresponding coupling.

To the best of our knowledge, a systematic inclusion of new physics in the propa-
gation of photons and the dynamics of the accretion disk has not yet been attempted.
Such investigations must of course also account for experimental and observational
constraints from various other settings, including astrophysical observations as well as
laboratory tests.

Violations of Lorentz symmetry resulting in a modified dispersion relation for pho-
tons could in principle lead to potentially observable signatures when images at dif-
ferent frequencies are available. This can be quantified considering a generic modified
dispersion relation (Colladay and Kostelecky, 1998; Liberati and Mattingly, 2016):

E2 = (cp)2 + f (n) (cp)n

Mn−2
P

, n > 2. (27)

The group velocity cg is given by:
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where we have defined the phase velocity cp = c2p/E. For two values of momenta p1
and p2, there is a displacement of the photon sphere:

∆rph = 3GM

∣∣∣∣∣ 1

c2g,1
− 1

c2g,2

∣∣∣∣∣ . (29)

We can estimate the order of magnitude of the constraints that can be placed on
|f (n)|, for a given value of n > 2, by equating the displacement above with the angular
resolution of ngEHT (there will be a numerical difference between the radius of the
photon sphere and the apparent size of the photon ring, but both have the same scaling
with the group velocity). For frequencies of 230 and 345 GHz, respectively, the deviation
in the speed of propagation from the relativistic speed of light is of the order 10−23,
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which does not lead to a detectable effect in the achromaticity of the photon ring.
In fact, such modified dispersion relations for photons are already tightly constrained
(with the leading-order term constrained to be transplanckian) with other observations
(Addazi et al., 2022).

5.2 Science cases

As summarized above, many of the compact objects motivated in various beyond-GR
scenarios share qualitatively common features among each other that distinguish their
shadow images from the Kerr case, at least in principle. Here, we delineate a program
to test the following generic features.

• First, horizonless objects such as boson stars, gravastars, fuzzballs as well as hori-
zonless regular spacetimes, non-hidden wormholes and naked singularities, may
mimic the central brightness depression of a BH. However, the central brightness
depression is typically less pronounced than for a BH. Accordingly, a high dynamic
range enables a better distinction of BHs from these horizonless spacetimes, cf.,
Sec. 5.2.1.

• Second, BHs beyond GR (both singular ones that may occur in modified-gravity
theories and regular ones that may be motivated by quantum gravity) often feature
deformations of the n = 1 (and higher-order) photon ring, some of which are non-
degenerate with the spin. Thus, a high-enough resolution and confident extraction
of the lensed emission may constrain parametric deviations from Kerr spacetime,
cf., Sec. 5.2.2.

• Third, all BHs cast an inner shadow8, i.e., a central dark image region which is
bounded by the direct image of the horizon, cf., Sec. 5.2.3. Just like the photon
ring(s), the inner shadow can be deformed in shape and size in scenarios beyond
GR.

• Fourth, some alternative spacetimes can lead to a significantly larger separation
between different photon rings (in comparison to the Kerr spacetime). This applies
to horizonless spacetimes and the respective occurrence of inner photon rings. It also
applies to a potential distinction between the n = 1 and the n = 2 photon rings.
Observational searches of multi-ring structures, cf., Sec. 5.2.4, can thus constrain
deviations from GR, even if the n = 2 photon ring of the Kerr spacetime remains
unresolvable.

This motivates testing for such image features without theoretical bias and, where
possible, in systematic parameterizations beyond GR. Below, we summarize the current
status of this effort. It is important to keep in mind that testing GR with spacetime
images is a fast-evolving field. Thus, the above list of signatures may not be exhaustive
and further promising image features may be added to the ngEHT effort in the future.

5.2.1 Horizonless spacetimes and their central brightness depression

In GR, the defining characteristic of a BH is its horizon, a one-way membrane that can
only be crossed inwards. This behavior is a paradigmatic illustration of the strength

8 Diffuse foreground emission can obscure the inner shadow.
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of the gravitational interaction in its nonlinear regime, and is therefore of essential
importance as a test of GR and the Kerr hypothesis.

While this short introduction does not aim at capturing the important technical
details in the mathematical definition of horizons, it is important to stress that there are
several definitions that have differing motivation and scope. The prevailing definition,
both for historical and popularity reasons, is the notion of an event horizon (Penrose,
1969; Hawking, 1976; Hawking and Ellis, 2011). This definition has nevertheless several
important drawbacks, which includes its global nature and the associated impossibility
of observing an event horizon in any physical experiment (Visser, 2014). This has
motivated the search for quasi-local definitions of horizons, such as apparent, dynamical
or trapping horizons, which can be coincident depending on the situation (Hayward,
1994; Ashtekar and Krishnan, 2004; Gourgoulhon and Jaramillo, 2008).

In general, any horizonless spacetime can thus be modelled by coefficients that
quantify (i) absorption (κ), (ii) reflection (Γ ), (iii) re-emission (Γ̃ ), and (iv) trans-
mission (τ ) of the central region (cf., Carballo-Rubio et al., 2022a). These coefficients
satisfy a sum rule κ + Γ + Γ̃ + τ = 1 coming from energy conservation. In spherical
symmetry, we can also define an effective radius R of the central object. These parame-
ters take different values depending on the model being considered, and are associated
with different image features as we will discuss in more detail below. We already know
from GR that total absorption (κ = 1) results in a central brightness depression. The
more dominant the absorption gets, the closer the horizonless object will mimic a BH.
Thus, no experiment can exclude the possibility of horizonless spacetimes. However,
the ngEHT will tighten experimental constraints on these coefficients. Such quantita-
tive constraints are crucial since they can exclude beyond-GR scenarios in which the
resulting horizonless objects are predicted to exceed these constraints.

In this section, we will describe the image features associated with each of these
coefficients Γ , Γ̃ and τ , as well as analyzing their observability. The brightness of these
features is linearly proportional to the corresponding coefficient, but their characteris-
tics are a function of the effective radius of the horizonless object. The linearity of the
problem implies that we can discuss these features independently, focusing on one of
them at a time without loss of generality.

• The effective radius R can be constrained to be below R ≲ 3 rg if the ngEHT finds
clear evidence of a photon ring (see Sec. 2 for a detailed discussion).

• Reflection on a physical surface has been studied, and compared with EHT images
for some values of the coefficients R and Γ , in EHT Collaboration (2022d) and
Carballo-Rubio et al. (2022a), the latter providing an extensive exploration of the
parameter space, and a quantitative analysis of the observability of these features
by EHT and a tentative ngEHT configuration based on the corresponding values
of angular resolution and dynamic range. The horizonless spacetime metric in that
case is a spherically symmetric shell that reflects a fraction Γ of all incoming rays.
For ultracompact objects, simulated images show an inner set of photon rings, cf.,
upper panels in Figure 17, which cannot be resolved by the EHT as the application
of a Gaussian filter shows (lower panels). On the other hand, improvements in image
dynamic range and angular resolution such as those expected to be achievable by
the ngEHT can noticeably change the situation, leading to a constraint Γ ≲ 10−1,
at least for i = 0◦ (see Figure 18).

• Re-emission from a physical surface has been also studied in Carballo-Rubio et al.
(2022a) within the framework of the same spherically symmetric model and using
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Fig. 17 Images of spacetimes where specular reflection takes place, but with partial absorption
(Γ = 0.5) and an intrinsic brightness (η = 10−2) included. We take an inclination i = 0◦,
ϵ = 10−3, without filter (top row) and a Gaussian filter with the EHT angular resolution of
20 µas (bottom row). We see that these values of η change appreciably the structure of the
central depression in brightness.

the same tools to assess the observability of the corresponding features, that take
the form of a central region with uniform brightness. As shown in Figure 17, the size
of the novel features associated with re-emission can be large enough that even the
angular resolution of EHT is enough to pick up these features. In fact, for the ideal
situation of i = 0◦, it is possible to constrain the re-emission channel (η ≲ 10−3),
but not the specular reflection channel. On the other hand, improvements in image
dynamic range and angular resolution such as those expected to be achievable by
the ngEHT can greatly improve the situation, leading to more stringent constraints
on the re-emission channel (η ≲ 10−4) and specular reflection channel (Γ ≲ 10−1),
at least for i = 0◦ (see Figure 18).
In addition, infrared observations constrain re-emission from a physical surface.
For instance, Sgr A* and M87* cannot have a physical surface that is in equilib-
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Fig. 18 Results of applying a Gaussian filter with an angular resolution of 5 µas for ϵ = 10−3,
Γ = 0.5, η = 10−3, i = 0◦ (top row) and i = 85◦ (bottom row). The optimistic value of angular
resolution of 5 µas can pick up the innermost structure of the simulated image. However, higher
inclination angles make it more difficult to discern the features associated with the existence
of a surface.

rium with the surrounding accretion environment (Broderick and Narayan, 2006,
2007; Narayan and McClintock, 2008; Broderick et al., 2009, 2015). However, grav-
itational lensing may prevent sufficiently compact objects from reaching equilib-
rium (Lu et al., 2017; Cardoso and Pani, 2017; Cardoso and Pani, 2019). Fur-
thermore, more complete descriptions of the behavior of the surface, including
rotation (Zulianello et al., 2021) and absorption (Carballo-Rubio et al., 2018b,
2022a), can have an important impact on the features of the re-emitted radiation
and delay reaching equilibrium, respectively. Together with available lower bounds
on R (Carballo-Rubio et al., 2018c), such considerations can reduce the allowed
parameter space (see also Sec. 4 in EHT Collaboration (2022d) for Sgr A*).

• The case without surface and with full transmission was recently investigated in
Eichhorn et al. (2022a), including a quantitative analysis of the capabilities of a
tentative ngEHT configuration. The horizonless spacetime metric in that case is
an overspun, regular BH with Planck-sized deviations from the Kerr spacetime.
Simulated images show an inner set of photon rings (upper panel in Figure 19)
which cannot be resolved by the EHT (lower left panel). A ten-telescope extension
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of the EHT, specified in the appendix of Eichhorn et al. (2022a), using a multi-
frequency reconstruction at 230 GHz and 345 GHz is capable of: (i) distinguishing
the horizonless spacetime from the Kerr spacetime with the same disk model by a
difference in the central brightness depression by a factor of about 40, (ii) showing
non-concentric intensity contours in the shadow region, indicating that the ngEHT
may be on the brink of resolving the inner photon rings, see right lower panel in Fig-
ure 19. It is an intriguing open question as to whether superresolution techniques
could resolve the inner photon rings.
Less compact horizonless objects, in particular boson stars, have been analyzed in
Vincent et al. (2016b); Olivares et al. (2020). The enhancement of a central low-
density region by gravitational lensing could in principle produce an image with a
central brightness depression comparable in size to the shadow of a Kerr BH of the
same mass, and with a similar morphology (see Figure 20). Numerical simulations
of accreting boson stars have shown that for the family of solutions with minimal
coupling V (Φ) ∝ |Φ|2 this effect is only present for the unstable members, and that
for such cases the predicted size of the dark region is always smaller than that of
the shadow of a Kerr BH with the same mass. For the parameters of Sgr A*, this
difference is ≳ 15 µas and therefore distinguishable with present EHT capabilities
(Olivares et al., 2020). Nevertheless, the distinction could becomes more challenging
for other ECOs. For instance, semi-analytical calculations for the case of Proca
stars predict that stable members of the family can produce central brightness
depressions which overlap in size with those in Kerr BH images (Herdeiro et al.,
2021) (see Figure 21). In this case, more precise tests are required to distinguish
between a ring produced by MHD effects and a true photon ring produced by
the capture of photons by an event horizon. These tests may include looking for
deviations from circularity in the shape of the dark region due to the observing
angle.
In fact, if lensing is weak (as it is the case for the Proca star shown in Figure
21), head-on views would produce more circular dark regions, while near-edge-on
views would show ellipsoidal, elongated shapes (Herdeiro et al., 2021). Our ability
to distinguish each case would improve with the maximum resolution achievable by
the ngEHT, with the possibility of resolving the thin photon ring being of particular
importance. Observations at different wavelengths would also play a crucial role.
In fact, the apparent location of a true photon ring should be achromatic, while
that of a ring of stalled plasma would depend on the optical depth of the accretion
flow at different frequencies. Other features which distinguish images of simulated
accretion onto boson stars from BH images include a smaller asymmetry due to
Doppler beaming and the absence of relativistic jets (Olivares et al., 2020). In part,
the reason for this is that simulations have been performed only for nonrotating mini
boson stars, where, for instance, the Blandford-Znajek mechanism cannot operate
(Blandford and Znajek, 1977). Although it has been suggested that rotating boson
stars with minimal coupling are likely unstable, this is not necessarily the case
for Proca stars or for some cases with self interaction (Sanchis-Gual et al., 2019).
However, GRMHD simulations of surfaceless ECOs are still relatively rare in the
literature, and additional studies may be required to explore the conditions and
level of confidence with which these objects can be distinguished from BHs.
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Fig. 19 We compare the simulated high-resolution image (far-left panel) of a horizonless
spacetime (generated by overspinning a regular BH to a∗ = 1.01) and its reconstructions using
the ehtim toolkit (Chael et al., 2018), as seen by: (i) the 2017 EHT array (middle-left panel),
(ii) the 2022 EHT array (middle-right panel), (iii) a multifrequency observation at 230 GHz
and 345 GHz of a potential ngEHT array with ten additional telescopes (far-right panel).
We also show (for the three reconstructed images) contour lines at 0.035 Jy, 0.05 Jy, and
0.065 Jy (whenever they exist) to visualize the structure of the central brightness depression.
See also Eichhorn et al. (2022a).

Fig. 20 Ray-traced images from GRMHD simulations of accretion onto a Kerr BH (left) and
a boson star (right) with the mass and distance of Sgr A*. Despite the different size, these
simulations show that under some circumstances, a horizonless, surfaces ECO can mimic the
morphology of a BH image by a combination of GRMHD and lensing effects. Figures taken
from Olivares et al. (2020).

5.2.2 Parametric tests of the Kerr paradigm

A complementary approach to the study of specific spacetimes beyond GR is to pa-
rameterize deviations from the Kerr spacetime as generally as possible (Benenti and
Francaviglia, 1979; Collins and Hughes, 2004; Vigeland and Hughes, 2010; Vigeland
et al., 2011; Johannsen and Psaltis, 2011a; Johannsen, 2013; Cardoso et al., 2014b;
Konoplya et al., 2016; Ghasemi-Nodehi, 2020; Kocherlakota and Rezzolla, 2020; Dela-
porte et al., 2022). Because these parameterized spacetimes lack a Lagrangian origin
and can be made as general as possible (given assumptions about the symmetries of the
spacetime), they in principle provide theory-agnostic tests of the Kerr spacetime, under
the assumption that a metric adequately captures all relevant gravitational degrees of
freedom. Non-metric theories may thus fall outside the parameterized BH spacetimes
in their current form. In practice, a comprehensive test of the underlying parameter
spaces is difficult because of their high dimensionality. The most general form of a
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Fig. 21 Ray-traced images of a Schwarzshild BH (left) and a Proca star (right) surrounded
by thin accretion disks terminating at the location predicted by the spacetime properties.
The lower panels are blurred by a Gaussian kernel, highlighting the possible degeneracy when
observing at a single frequency without resolving the thin photon ring. Figure reproduced with
permission from Herdeiro et al. (2021).

parameterized spacetime contains several free functions of the spacetime coordinates.
Assuming series expansions and truncating at finite order reduces this freedom to a
finite set of free parameters. Explicit tests rely on (a) choosing specific functions (e.g.,
regular BHs can be embedded in parameterizations through specific choices of func-
tions) or (b) working at finite order in the series expansion.

Parameterizations typically make assumptions about the spacetime and its sym-
metry properties:

• The most general parameterizations to date assume only axisymmetry and station-
arity (Delaporte et al., 2022).

• In addition to axisymmetry and stationarity, one may assume circularity (Xie et al.,
2021), which is an isometry that imposes conditions on the Ricci tensor, resulting
in parameterizations with five (Konoplya et al., 2016) or four free functions (Papa-
petrou, 1966).

• In addition to circularity, one may demand the existence of a Killing tensor (Benenti
and Francaviglia, 1979; Vigeland et al., 2011; Johannsen, 2013), which implies a
conserved quantity of the geodesic motion, generalizing the Carter constant and
guaranteeing integrability. Beyond technical simplicity, there is no fundamental
reason why theories beyond GR must satisfy circularity nor admit a generalized
Carter constant.

• Reflection symmetry about the equatorial plane can be preserved or broken (Chen
and Yang, 2022). The existence of a Killing tensor guarantees the vertical sym-
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Fig. 22 We show the inner shadow (inner shaded region) and the first lensing band (outer
shaded band) of deviations from a Kerr BH with spin a∗ = 0.9 viewed at near-face-on inclina-
tion of 17◦. In each panel, we compare the Kerr case (blue-shading and the same throughout all
panels) to spacetimes with varying KRZ parameters (Konoplya et al., 2016) (orange-shading)
δω00 and δa00. The parameter δω00 relates to deviations of the asymptotic spin parameter. The
parameter δa00 relates to deviations in the first parameterized post-Newtonian coefficients. See
also (Cárdenas-Avendaño and Held, 2023).

metry of the critical curve on the image plane, even if the spacetime is reflection
asymmetric (Cunha et al., 2018; Chen, 2020).

One can utilize these spacetimes, model the surrounding accretion flow and then simu-
late an intensity image to see how these parameterized models can cast shadow images
by solving the geodesic equations numerically. There have been various studies uti-
lizing these spacetimes to investigate deviations from the Kerr metric (Psaltis et al.,
2020a; Younsi et al., 2016, 2023; Völkel et al., 2021; Mizuno et al., 2018a; Kocherlakota
and Rezzolla, 2020, 2022; Nampalliwar and K, 2021; Ayzenberg, 2022; Nampalliwar
et al., 2022a; EHT Collaboration, 2022a). Observables which are most relevant to con-
strain parameterizations of spacetimes with a horizon are likely the photon rings. In
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Younsi et al. (2023) and Ayzenberg (2022), photon rings have been used to investigate
constraints on parameters of circular metrics with and without Carter-like constants,
obtained by analyzing simulated images of spacetimes with accretion disks.

One can also constrain the parameters in these parameterizations with other obser-
vations, e.g., GWs (Cardenas-Avendano et al., 2020; Carson and Yagi, 2020; Shashank
and Bambi, 2022), or X-ray data (Cardenas-Avendano et al., 2020; Yu et al., 2021), or
even Solar System tests. Thus, if uniqueness theorems hold beyond GR, some param-
eter values are already too small to be further constrained by the ngEHT. However,
beyond GR, BH uniqueness theorems do not need to hold and thus SMBHs may well
correspond to different solutions from stellar-mass BHs. In this case, only constraints
from observing the same object with different techniques are meaningful. In Figure 22
we exemplify how the inner shadow and the first (n = 1) lensing band, i.e., the im-
age region in which all lensed (equatorial) emission must occur, deforming when such
constraints are set aside (cf., Cárdenas-Avendaño and Held, 2023).

5.2.3 Image signatures of event horizons: the inner shadow

BH can create unique image signatures through their extreme gravitational lensing and
event horizon. These signatures are influenced by their surrounding accretion and emis-
sion properties. In the high-magnetic-flux MAD state of BH accretion (Igumenshchev
et al. (2003); Narayan et al. (2003); Tchekhovskoy et al. (2011); see also Bisnovatyi-
Kogan and Ruzmaikin (1974)), which is favored by polarimetric EHT observations of
M87∗ (EHT Collaboration, 2021b), the magnetic pressure exceeds the gas pressure
in the disk near the BH. In time-averaged simulation data, the near-horizon material
forms a thin, highly magnetized structure in the equatorial plane. This thin equatorial
structure is the source of most of the observed 230 GHz emission.

Chael et al. (2021) showed that MAD simulations of M87∗ naturally exhibit a
deep flux depression whose edge is contained well within the photon ring and critical
curve (see Figure 23). This darkest region, or inner shadow, corresponds to rays that
terminate on the event horizon before crossing the equatorial plane even once. This
region is bounded by the direct image of the equatorial event horizon. More generally, as
long as the emission near a BH is predominantly near the equatorial plane and extends
all the way to the horizon, the darkest region in the observed image will correspond to
the inner shadow. In addition, because of gravitational redshift, the image brightness
falls rapidly near the edge of the inner shadow. As a result, detecting an image feature
associated with the inner shadow requires images with high dynamic range.

The inner shadow of a Kerr BH has a significantly different dependence on its
parameters than the critical curve (Takahashi, 2004). For instance, the critical curve
of a Schwarzschild BH is always a circle with radius

√
27 rg, while the inner shadow of

a Kerr BH has a size, shape, and relative displacement that depend sensitively upon
the viewing inclination relative to the spin axis and the position angle of the projected
spin axis on the sky. The photon ring and inner shadow thus provide complementary
information. When considered independently, each is subject to degeneracies in its size
and shape as a function of BH mass, spin, and viewing angle: these degeneracies can
be broken via simultaneous observations of both features.

In both GRMHD simulations with strong magnetic fields and in semi-analytic,
optically thin disk models, the photon ring and the inner shadow are both prominent
as observable features. In Figure 23, we investigate the ability of the EHT and ngEHT
arrays to recover the inner shadow feature with simulated image reconstructions of a
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Fig. 23 Left: example GRMHD snapshot image of M87∗ for a MAD accretion model onto a
BH with mass M = 6.2 × 109 M⊙ and spin a∗ = 0.9375 (Chael et al., 2021). Center left: the
same GRMHD snapshot image, convolved with a Butterworth filter with a cutoff frequency of
1/10µas. Center right: reconstruction of the simulation model from synthetic data generated
on EHT2017 baselines. Right: reconstruction of the simulation model from synthetic data
generated from a concept ngEHT array. The top row shows images in a linear color scale and
the bottom row shows the same images in gamma scale. In all images, the white curve shows
the boundary of the inner shadow, while the cyan curve shows the boundary of the shadow.
The BH spin vector points to the left (East).

snapshot image from a radiative GRMHD simulation of M87∗ (Chael et al., 2019).
We generate synthetic VLBI data from the 230 GHz simulation image using the EHT
baseline coverage on 2017 April 11 (EHT Collaboration, 2019d). We also generate
synthetic data using example 230 GHz and 345 GHz ngEHT coverage, assuming a flat
spectral index in the underlying source model. This ngEHT concept array used here
(Raymond et al., 2021) adds 12 telescopes to the current EHT, substantially improving
the EHT’s baseline coverage, angular resolution, and imaging dynamic range. In both
cases, we generated synthetic data including thermal noise and completely randomized
station phases from atmospheric turbulence, but we did not include the time-variable
amplitude gain errors that complicate real EHT imaging (EHT Collaboration, 2019c,d).

The second column of Figure 23 shows the simulation image blurred to half of the
nominal ngEHT resolution at 230 GHz (using a circular Gaussian blurring kernel of
10µas FWHM). The remaining columns show the EHT and ngEHT reconstructions
using synthetic data. Both reconstructions were performed using the eht-imaging
library (Chael et al., 2018); the settings used in imaging the 2017 data were the same
as those used in eht-imaging in the first publication of the M87 results in EHT
Collaboration (2019d). While the EHT2017 reconstruction shows a central brightness
depression, its size and brightness contrast cannot be strongly constrained or associated
with the inner shadow. However, the increased baseline coverage of the ngEHT array
significantly increases the dynamic range, and the image reconstruction recovers better
the position and size of the high-dynamic-range inner shadow that is visible in the
simulation image blurred to the equivalent resolution.

This imaging test is idealized. We neglect realistic station amplitude gains and
polarimetric leakage factors that complicate image inversion from EHT data. How-
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Fig. 24 Simulation and reconstruction brightness cross sections along the East-West axis.
The yellow curve shows the 1D brightness profile of the M87∗ GRMHD simulation snapshot in
Figure 23. The dashed green curve shows the 1D brightness profile from the same simulation
after convolution with a Gaussian with a FWHM of 5 µas. The solid blue line shows the median
brightness profile extracted from the Comrade ngEHT reconstructions. The band shows the 99%
posterior credible interval for the 1D brightness profile. The gray band along the bottom shows
the region interior to the BH shadow, and the black band shows the inner shadow region.

ever, M87∗ is weakly polarized, making accurate recovery of the total intensity image
possible with no leakage correction (EHT Collaboration, 2019d, 2021a), and image
reconstruction of EHT data with even very large amplitude gain factors is possible
with a relatively small degradation of the reconstruction quality using eht-imaging.
In the ngEHT reconstruction, we assume a flat spectral index between 230 GHz and
345 GHz and simply stack the visibility data from simulated ngEHT observations at
both frequencies. A more realistic approach would solve for the spectral index between
the two frequencies simultaneously with the image during the fit (Chael et al., 2022).

This somewhat idealized example demonstrates that the ngEHT array could con-
strain the presence of an inner shadow in M87∗ if it is indeed present in the image.
In particular, detecting this feature does not require dramatic increases in imaging
resolution (which, in the absence of a 230 GHz VLBI satellite, is limited by the size of
the Earth) but does require increases in the imaging dynamic range, which is limited
by the sparse baseline coverage of the EHT array. Once its presence is established via
imaging, parametric visibility domain modeling may better recover the size and shape
of the inner shadow to higher accuracy than is possible from imaging alone (e.g., EHT
Collaboration, 2019f).

In Figure 24, we show cross sections of the simulation and reconstructed images.
The reconstructions are from the Julia (Bezanson et al., 2017) Bayesian VLBI imaging
package Comrade (Tiede, 2022). Comrade’s imaging approach is similar to Broderick
et al. (2020b); Pesce (2021), and fits a rasterized grid of pixels to the data. For our
image model we used a 16 × 16 raster with a 100 µas field of view. A flat Dirichlet
prior was chosen for the raster fluxes and we fit to visibility amplitudes and closure
phases. The simulation image features faint foreground emission from the approaching
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Fig. 25 Left: the ratio of the mean radius of the lensed horizon r̄h to the mean radius of the
critical curve r̄c. In the low-inclination case, r̄h/r̄c shrinks from ≈55% at zero spin to ≈45%
at maximal spin. Right: simultaneous constraints on the BH mass-to-distance ratio M/D and
spin a∗ enabled by measuring the mean radius of the lensed horizon (blue, r̄h) and critical
curve (red r̄c), when the inclination is fixed to 17◦, as is appropriate for M87∗ (Mertens et al.,
2016; Craig Walker et al., 2018). Without fixing the mass, multiple values of a∗ provide the
same result for the size of each feature, but combining a measurement of both features breaks
this degeneracy. The shaded regions show regions corresponding to 0.1, 0.5, and 1µas errors
on the radius measurement. The input mass scale and spin are M/D = 3.78µas and a∗ = 0.94.

relativistic jet, which lies in front of the bulk of the emission in the equatorial plane
and provides a finite brightness “floor” inside the inner shadow. With the addition of
new sites and short interferometric baselines, the ngEHT achieves the dynamic range
necessary to identify the brightness depression associated with the inner shadow, which
extends to levels 102 dimmer than the peak of the emission for this simulation.

Figure 25 shows how measurements of both the mean radius of the inner shadow
(r̄h) and of the critical curve (r̄c) could be used to estimate BH parameters. In the low-
inclination case, the ratio r̄h/r̄c shrinks from ≈55% at zero spin to ≈45% at maximal
spin. For θo ≲ 30◦, r̄h/r̄c is approximately independent of the inclination, providing a
pathway to measuring the BH spin. Importantly, measuring r̄h/r̄c for an astrophysical
BH would not require accurate measurements of the BH mass M or distance D.

Figure 25 demonstrates how a simultaneous measurement of the radius of the criti-
cal curve and the lensed horizon could be used to constrain the mass and spin in M87∗

when the inclination is fixed at θo = 17◦ (Mertens et al., 2016). These simultaneous
constraints are analogous to those discussed in Broderick et al. (2022), which considers
constraints from measuring multiple lensed images from a single face-on emitting ring.
The blue line shows the space of mass-to-distance ratios M/D and spins a∗ that give
the same mean lensed horizon radius for an image of M87∗; the red line shows the same
for the critical curve. The red and blue lines intersect in only one location corresponding
to the input BH mass M/D = 3.78 µas and spin a∗ = 0.94. The shaded bands around
the intersecting lines show absolute errors in the radius measurements of 0.1, 0.5, and
1 µas. Given a reported EHT radius measurement uncertainty of 1.5 µas from geomet-
ric modeling of the EHT 2017 data in EHT Collaboration (2019f), measurements of
the ring and inner shadow radius and centroid locations at ≲ 1 µas precision may be
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Fig. 26 Multi-ring structures for specific circular deviations of Kerr spacetime (b01 = 5 in
the KRZ parameterization (Konoplya et al., 2016)) at fixed spin parameter of a∗ = 0.9M
and viewed at the inclination of M87*. From left to right we show (i) the n = 1 lensing band
(for Kerr spacetime in blue-dashed and with deviation in green-continuous), cf. Cárdenas-
Avendaño and Held (2023); (ii) the resulting image in this spacetime assuming a specific disk
model, cf. Eichhorn et al. (2022a); (iii) the same image but blurred with a Gaussian kernel
with σblur = 5µas; and (iv) with σblur = 10µas. (For the translation of rg = M to the overall
image scale in µas, we determine the maximum diameter of the convex hull of all image pixels
with at least half of the average intensity per pixel.)

Fig. 27 As in Figure 26 but for a non-spinning (a∗ = 0) regular BH with exponential falloff
in the mass function as in (Simpson and Visser, 2019). The deviation is chosen near-critical
such that if it is further increased, the regular spacetime would transition from a BH to a
horizonless object.

feasible with the ngEHT. In addition to reducing uncertainty in the image size mea-
surement itself, precisely constraining both features will depend on reducing systematic
uncertainty in the relationship between the gravitational features and images from a
set of plausible astrophysical models (e.g., EHT Collaboration, 2019f).

5.2.4 Resolvable multi-ring structures

In any given spacetime, the nth-order photon rings (for n > 0) necessarily lie within
finite lensing-band regions in the image plane, irrespective of the radial location of the
emission region. With astrophysical priors on the emission region, these finite lensing-
band regions can only become more restrictive. Moreover, each lensing-band region of
order n contains all higher-order (m > n) ones and thus provides a theoretical upper
limit on the maximum radial separation of successive photon rings in the image plane
(cf., Sec. 2 for a discussion of the ngEHT capabilities of resolving photon rings in the
Kerr spacetime).

Some of the possible deviations from Kerr (Sec. 5.2.2) can significantly broaden the
n = 1 lensing-band region (see Cárdenas-Avendaño and Held, 2023, and Figure 26 for
an example). For any such deviations, higher-order photon rings could become resolv-
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able at an appreciably lower resolution than for the Kerr spacetime. This entails that
the respective scenarios for new physics could be constrained by the non-observation of
such multi-ring structures, even if the ngEHT resolution is insufficient to resolve multi-
ple photon rings in Kerr spacetime. One such scenario to be constrained by multi-ring
structures are regular BHs with an exponential falloff function (see Figure 27).

Constraints on new physics from searches for multi-ring structures naturally benefit
from increased (effective) resolution. However, they also benefit from an increase in
dynamic range. This is because higher-order rings are less bright, as can be seen in the
middle-right panels in Figures 26–27, where the secondary ring appears far lower in
intensity than the primary one.

5.3 ngEHT challenges for numerical simulations

Numerical simulations played a crucial role in interpreting the observations of M87* and
Sgr A* obtained during the 2017 EHT campaign (EHT Collaboration, 2022c). Libraries
of synthetic images from GRMHD models have enabled constraints on parameters of
the accretion flow and the BH spacetime with increasing accuracy. These include the
BH mass, accretion rate, and inclination angle. Under a few additional assumptions,
they also provide information on the magnitude of the BH spin and the typical ratios
between electron and ion temperatures (e.g., Roelofs et al., 2023; Chatterjee et al.,
2023a).

From the point of view of testing of GR and the Kerr hypothesis, GRMHD sim-
ulations can be used to understand the extent to which deviations from a model can
be attributed to the spacetime, as opposed the those attributable to the accretion flow
model (Bronzwaer et al., 2020). In fact, insights obtained from simulation-based mod-
eling, such as the deviation of the size of the bright ring with respect to the actual BH
shadow, have been used by the EHT Collaboration to test the Kerr hypothesis and to
study a few specific BH alternatives (Psaltis et al., 2020b; Kocherlakota et al., 2021;
EHT Collaboration, 2022d; Younsi et al., 2023). One of the most interesting prospects
of the ngEHT is the possibility of probing the spacetime around supermassive com-
pact objects in even greater detail. In light of this, we list here what we consider to be
some of the most interesting research avenues that should be addressed using numerical
simulations (not necessarily in order of importance).

GRMHD-informed semi-analytic models
Synthetic images created from semi-analytic models of the accretion flow are much
faster to generate as compared to those from GRMHD models, offering clear advantages
when fitting images by sampling over large regions of the parameter space (Palumbo
et al., 2022). This is especially important when considering alternatives to Kerr BHs, for
which the size of the parameter space increases considerably. Semi-analytic models have
been used to explore emission from fluid configurations around non-Kerr BHs and other
compact objects (see e.g. Vincent et al., 2016b, 2021; Kocherlakota and Rezzolla, 2022;
Bauer et al., 2022b; Daas et al., 2022b; Özel et al., 2022; Younsi et al., 2023). However,
in many cases these are limited to spherically or axisymmetric static configurations,
and leave out much of the physics present in simulations, e.g., turbulence and temporal
variability. With increasingly detailed observations enabled through the ngEHT, more
detailed models will help to better constrain the properties of the spacetime and the
accretion flow.
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Work to characterize variability in GRMHD simulations has been performed previ-
ously (Georgiev and et al., 2022). This characterization becomes increasingly relevant
in light of the difficulties of GRMHD models within the EHT library to match the
observed variability of Sgr A*, which could point to the necessity of considering differ-
ent accretion models or including additional physical processes (EHT Collaboration,
2022c).

Alternatives to Kerr BHs may come with additional features in the accretion flow
that are essential to include in realistic semi-analytic models. For instance, models
in which the event horizon is replaced by a surface that exchanges momentum with
electromagnetic radiation (EHT Collaboration, 2022d) may be incomplete without con-
sidering a similar exchange of momentum with matter. It is to be expected that the
interaction of the relativistically-infalling plasma with a hard surface would produce
strong shock waves that could be detectable (notwithstanding redshift of subsequent
emission) even when the surface itself has a very large heat capacity and produces
almost no thermal emission.

Another issue to consider is the possibility of images with ring-like features that do
not originate from a BH shadow. This situation occurs even in several SANE (Narayan
et al., 2012) Kerr models of the EHT simulation library, where the radius of maximum
emission appears to be related to the position of the ISCO (Bronzwaer et al., 2020),
and for models where there is strong emission coming from the jet base (EHT Col-
laboration, 2022c). In non-Kerr spacetimes with a maximum in the rotation velocity
profile of circular geodesics, very clear ring structures may appear as a result of the
suppression of the magnetorotational instability (MRI) (see Olivares et al., 2020, and
Sec. 4.3.4). This latter effect has already been considered in semi-analytic models of
horizonless compact objects (Herdeiro et al., 2021) However, there are several questions
that need to be answered, as its robustness, or whether there are mechanisms other
than the suppression of the MRI that could produce similar ring-like structures. A
better understanding of these features would aid in constructing semi-analytic models
of accretion onto alternative compact objects with the correct emission geometry.

Perturbative deviations from the Kerr metric
General-relativistic hydrodynamic and GRMHD simulations of accretion in alternative
spacetimes are still relatively uncommon. Examples include non-BH objects such as
boson stars (Meliani et al., 2016, 2017a; Olivares et al., 2020; Teodoro et al., 2021),
BHs in specific alternative theories of gravity (Mizuno et al., 2018b; Fromm et al.,
2021; Röder et al., 2022, 2023; Chatterjee et al., 2023b) and BHs in theory-agnostic
parameterized metrics (Nampalliwar et al., 2022b; Chatterjee et al., 2023c). Some of
these examples were conceived mainly as proofs of principle, and are either extreme
cases that exhibit properties that are easily distinguishable from those of Kerr BHs, or
consider accretion regimes distinct from that expected around the main EHT targets.

However, observations of M87* and Sgr A* during the EHT 2017 campaign show
a remarkable agreement with the Kerr hypothesis. This indicates that deviations with
respect to the Kerr geometry are likely small and can be treated as perturbations using
the existing parameterized expansions (see Sec. 5.2.2). The search for such deviations
would benefit from a systematic study of the effects that varying the leading order
deviation parameters have on the accretion flow properties and subsequent synthetic
images.

Although the different deviation parameters span a large parameter space, the
regions to explore could be reduced by exploring near to the Kerr models most favored
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by the EHT scoring (EHT Collaboration, 2022c), and by making informed choices that
account for existinf degeneracies, as was done by (Nampalliwar et al., 2022b) for the
degeneracy between the spin and the size of the ISCO. The parameter space exploration
would also benefit from the use of informed semi-analytic models as described above.

The structure of the accretion flow onto SMBHs
All of the simulations used for the interpretation of the EHT M87* observations and
most of those used for Sgr A* are variations of the same physical scenario: a rotation-
supported torus in hydrodynamic equilibrium is initialized at a distance of a few rg
from the SMBH, a weak poloidal magnetic loop is added inside the torus, and the sys-
tem is slightly perturbed. Subsequently, the MRI (Balbus and Hawley, 1991) produces
turbulence, which amplifies the magnetic field and facilitates angular momentum trans-
port. Depending on the dynamical importance of the magnetic field in the saturated
state, models are classified as SANE (less magnetized) or MAD (more magnetized).

However, large scale simulations of accretion onto Sgr A* fed by stellar winds show
flow patterns that differ from this scenario in several aspects. Most notably, they show
that the MRI is relatively unimportant at several scales. While at large scales the
magnetic fields are weak and passively advected (Ressler et al., 2020a), at horizon
scales they accumulate and become dynamically, regulating accretion in a way similar
to MADs (Ressler et al., 2020b). Due to computational limitations, however, few works
have treated the problem using GRMHD (Ressler et al., 2020b; Lalakos et al., 2022).

For a correct interpretation of the ngEHT observations, it is essential to under-
stand in which regime the accretion flow pattern can be represented by typical tori
simulations and whether this regime is realized by in the environment of the ngEHT
targets, or if a change in the simulation paradigm is needed. Of course, this consider-
ation also applies to alternative spacetime geometries and compact objects, for which
uncertainties associated with the accretion flow need to be sufficiently understood be-
fore drawing conclusions regarding the spacetime properties or the presence of new
fundamental physics.

Beyond ideal MHD
In general, models based on GRMHD simulations show an excess in variability when
compared to observations at 230 GHz (EHT Collaboration, 2022c). However, it is
expected that non-ideal effects like viscosity and thermal conduction will lead to a de-
crease in variability. Their inclusion is motivated by the fact that plasma in the vicinity
of Sgr A* and M87* is practically collisionless, and these can be used in GRMHD simu-
lations to describe leading order corrections due to kinetic effects (Chandra et al., 2015;
Foucart et al., 2017). The consequences of these and other non-ideal effects like resis-
tivity (Ripperda et al., 2019) for the source variability and other observable properties
still needs to be investigated.

Another research direction that requires physics beyond ideal MHD is the study
of BH magnetospheres. These regions are difficult to simulate using GRMHD and are
more readily described using force-free electrodynamics (FFE). This commonly leads
to the choice of ignoring regions with very high magnetizations when producing ray-
traced images from GRMHD data. However, general relativistic simulations combining
the physics of GRMHD and FFE have already been performed in the context of ac-
cretion onto millisecond pulsars (Parfrey and Tchekhovskoy, 2017). These kinds of
simulations may become increasingly important in light of accretion scenarios such as
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those described in Blandford and Globus (2022a,b), in which magnetospheres play a
crucial role in the dynamics and overall flow pattern.

Similar to the discussion regarding the structure of the accretion flow, any attempt
to probe gravity and new fundamental physics in the vicinity of BHs must take into
account the limitations of the plasma model, and the pursuit of research lines such as
those outlined above is expected to contribute towards helping alleviate these current
uncertainties.

5.4 Outlook

Many of the known beyond-GR scenarios, (cf., Sec. 5.1) result in similar signatures for
VLBI observations of SMBHs. Amongst these signatures, we have identified as promis-
ing science cases for the ngEHT: (i) a less pronounced central brightness depression
(cf., Sec. 5.2.1), (ii) deformations of the n = 1 photon ring (cf., Sec. 5.2.2), and (iii)
potentially resolvable multi-ring structures (cf., Sec. 5.2.4). There may well be further
relevant science cases in the future, given the field of testing GR and other theories of
gravity with BH images is now evolving quickly.

We highlight the key role of BH uniqueness theorems: in GR, BH uniqueness holds
and implies that the Kerr spacetime can be constrained by a range of different ob-
servations of distinct BHs, namely with electromagnetic signals, GWs, and with PN
constraints. Beyond GR, the assumption of BH uniqueness is a very strong constraint
on the theory. For instance, even in one of the simplest extensions of GR, curvature-
squared gravity (Stelle, 1978), there are several spherically-symmetric BH solutions
at any given value of the asymptotic mass, albeit only one stable one (Brito et al.,
2013; Held and Zhang, 2023). There are therefore two distinct possibilities regarding
the constraints that the ngEHT may impose.

• If BH uniqueness holds beyond GR, then many beyond-GR spacetimes are already
constrained by other observations. Possible ngEHT signatures are then in many
cases small and difficult to detect.

• If BH uniqueness does not hold beyond GR, then the ngEHT has the potential to
constrain the strong-field regime of SMBHs. Then, ngEHT signatures may be large
enough to be detected.

There is by now a considerable body of theoretical work on images of spacetimes beyond
GR. However, many of these are limited to determining the critical curve, which in
itself is not observable. Images with disks have been generated for some spacetimes
and enable us to better assess whether these spacetimes may be distinguished from the
Kerr spacetime with the ngEHT.

By moving beyond static images, it is likely that much can be learned from a
spacetime-tomography approach to spacetimes beyond GR. There is currently a gap
in the literature in the sense that systematic investigations of how informative, e.g.,
time-dependent emission, hot spots and similar features can be, have not yet been
conducted.

A further critical gap in the literature concerns the power of superresolution tech-
niques. In Broderick et al. (2022), it has been demonstrated that, under additional
assumptions, superresolution techniques allow one to reconstruct the n = 1 photon
ring. Beyond GR, these techniques may be invaluable in imposing meaningful con-
straints.
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From the phenomenological side, there are several observables for which little is
known beyond their Kerr signature. This includes polarization, which is poorly inves-
tigated in spacetimes beyond GR. Similarly, the achromaticity of the ring could be a
strong way to distinguish the Kerr spacetime from at least some settings beyond GR.
However, studies of images at several frequencies are so far mostly lacking in settings
beyond GR.



82 The ngEHT Fundamental Physics SWG

6 Exploring binary black holes with ngEHT

In our dark energy, dark matter driven Universe, structures are expected to build up
hierarchically from the merger of smaller scale collapsed haloes, suggesting that larger
galaxies assemble by via mergers over cosmic time, potentially also involving primordial
BHs as seeds of collapse. Since the growth of SMBHs hosted in galactic nuclei is under-
stood to be driven by both accretion and BH-BH mergers, supermassive BH binaries
(SMBHBs) are believed to be the natural outcome of galaxy mergers. In particular,
mergers are expected to be the dominant growth channel for BHs hosted in galaxies
that reside in dense environments, especially at high BH masses, the range that is acces-
sible to ngEHT observations (Kulier et al., 2015; Weinberger et al., 2018; Ricarte and
Natarajan, 2018; Pacucci and Loeb, 2020). Binary BH mergers, or other strongly dy-
namical spacetimes such as collapsing configurations, may probe the strong-curvature
regime of GR (Cardoso et al., 2023). SMBBHs in the GW-driven regime are the critical
missing piece to the assembly of supermassive BHs. The ngEHT can probe the most
astrophysically relevant parameter space (total masses of order 108 − 109M⊙) that
are challenging for both Pulsar Timing Arrays (PTAs) or LISA. Furthermore, multiple
detections of binaries at different redshifts (especially with a fortunate simultaneous
GW detection) probe cosmology. SMBHBs would be very efficient natural multimes-
senger laboratories for addressing ngEHT science goals, especially those described in
Secs. 3, 5, & 6.3.

During SMBH mergers, dynamical friction and interactions with the stellar con-
tents and accreting materials draws the two SMBHs to the nucleus of the newly cre-
ated merger remnant (Merritt and Milosavljević, 2005). The evolution and fate of the
SMBHB is dictated by a range of physical processes that operate to cause it to shrink
via the loss of angular momentum in the orbit. The environmental interactions that
drive the binary down to separations of ∼0.1–10 pc are well understood, but the de-
tailed mechanism(s) implicated in causing continued inspiral beyond this point, and
in particular down to the sub-parsec scale regime in which GW emission takes over to
shrink the binary orbit, still remain unclear (e.g., Begelman et al., 1980a). A number
of viable solutions to this long-standing and so-called “final parsec problem” (Armitage
and Natarajan, 2002; Milosavljević and Merritt, 2003) have been proposed. For in-
stance, interactions with gas in a circumbinary disk and three-body interactions with
stars in the innermost regions could all contribute to, and have a significant influence
on, the evolutionary timescale for the binary. Uncovering the details of the physics dur-
ing this last parsec of evolution and final merger informs the science cases of ongoing
and future GW detectors such as PTAs, space-based GW interferometry (e.g., LISA),
and other future advanced GW facilities.

Dynamically speaking, the formation and evolution of SMBHBs evolves through
three main phases after galaxy mergers (Begelman et al., 1980b; Armitage and Natara-
jan, 2002; Colpi, 2014): the pairing stage, the hardening stage, and the gravitational
radiation dominated final coalescence phase. During the pairing phase, the binary sep-
aration is of the order of several kpc, and the two SMBHs migrate inwards towards
the center through dynamical friction with gas until a compact binary is formed at
separations of a few pc (Armitage and Natarajan, 2002). The second hardening phase
involves interaction with the stellar population in the innermost regions and could also
be modulated by the presence and availability of gas in the vicinity. It is not clear
how long it is likely to take SMBHBs to reach the critical separation where angular
momentum loss via GW emission starts taking over. The presence of gas in the inner
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regions has been demonstrated to facilitate this stage Armitage and Natarajan (2002).
In idealized simulations, it appears that mergers and final coalescence can occur within
a Hubble time, in agreement with theoretical work modeling the mass assembly history
of SMBHs over cosmic time that requires BH mergers to explain the mass distribution
of SMBHs as observed today. The recent observational detection of a SMBHB in UGC
4211 with a 230 pc separation by ALMA opens up a new window into potential de-
tection for candidates in the transition phase between the pairing and hardening stage
Koss et al. (2023). The lack of even indirect observational evidence for SMBHBs at the
sub-parsec separation phase is impeding progress in this field and it is in this domain
that the ngEHT stands to be transformative.

The remnant evolution of SMBH binaries at the gravitational radiation phase is
determined by their emitted GWs. The frequency of GWs emitted by SMBHBs at this
phase enters into the PTA band, which is about 1 per year to 1 per decade. Simultane-
ously, their angular separation assuming they are located at Gpc distances is roughly
a few to several tens of µas, which is within the reach of the ngEHT. The combination
of multi-band electromagnetic observations and PTA observations forms a multi-band
and multi-messenger astrophysical era of SMBHBs. For smaller binary separations and
shorter orbital periods the orbital decay is GW-driven and may outpace the viscous
time scale in the disk, leading to a decoupling of the binary from the disk (see, e.g.,
Gold, 2019). The transition where this decoupling occurs is obtained by equating the
GW time scale with the viscous time scale of the disk, which depends strongly on the
geometric thickness. For thin disks the decoupling could occur at separations relevant
for the ngEHT. For geometrically thicker disks, accretion may proceed until smaller
separations with mini-disk formation (Paschalidis et al., 2021).

Much like the study of binary stars, which are generally described by their method
of discovery and observation, SMBHBs are apt to be found by the ngEHT in one of the
following ways: transiting binaries, astrometric binaries, and telescopic binaries. We
discuss these techniques and the candidates detected by each of these methodologies in
more detail later in this section. A wide range of SMBHB candidates are detected via
multiple techniques and these include periodically variable quasars (D’Orazio et al.,
2015; Charisi et al., 2016) and quasars exhibiting broad emission lines that indicate
high recoil velocities (≥ 1000 km s−1) (Eracleous et al., 2012). Among the periodi-
cally variable AGN, the low-luminosity AGN exhibit shorter mm-wavelength variation
timescales and may be superior targets for the ngEHT as these SMBHBs may be re-
solved with relative astrometry (D’Orazio and Loeb, 2018a). Recently, the search for
SMBHBs amongst quasars with offset broad lines using very long baseline arrays was
conducted by Breiding et al. (2021), however, no double radio sources were found to be
resolved. One possible reason for their non-detection is that the projected orbital sep-
aration lies within the limit of the current observing resolution (Breiding et al., 2021).
The ngEHT with significantly better resolution has the capacity to resolve potential
candidates.

The ngEHT will have a nominal angular resolution of ∼ 15 µas, which translates
to a spatial resolution of ≤ 0.13 pc across redshifts. Additionally the adoption of su-
perresolution techniques might help improve this further, by factor of a few for imaging
(Chael et al. 2016, Akiyama et al. 2017, Broderick et al. 2020c) or substantially more
for geometric modeling of simple structures such as displaced but individually unre-
solved emission regions. This means that the ngEHT can therefore spatially resolve
SMBHBs that have entered their steady-state GW emission phase. The orbital period
at this stage is typically short (ranging from months to years), which makes it acces-
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sible to multi-epoch observations with the ngEHT. Furthermore, D’Orazio and Loeb
(2018b) estimate that between 1 and 30 sub-parsec SMBHBs should have millimeter
flux densities in the ≳ 1 mJy regime and will hence also be accessible with the ngEHT.

The current best studied candidate SMBHB is the radio source OJ287 (z = 0.306).
This source has been observed for over 120 years and is a quasi-periodic flaring source.
There is a well observed double flare structure with ∼12 year periodicity (as measured
from Earth), or ∼9.2 years in the source proper time. This difference has been at-
tributed to the presence of an as of yet unseen secondary BH with mass 1.5× 108M⊙
passing through the accretion disk of a much more massive primary, with an estimated
mass of ∼ 1.835 × 1010M⊙ (e.g., Sillanpaa et al., 1988; Lehto and Valtonen, 1996;
Dey et al., 2018). The mass and period of OJ287 imply a Newtonian semi-major axis
of 1.16 × 104 AU, corresponding to 12.4 µas at the source redshift, and with the esti-
mated eccentricity of ∼0.65, a maximum primary-secondary separation at apoapsis of
∼ 20.3 µas. This renders it directly resolvable by the ngEHT at its highest frequency.
At periapse, the secondary would move at a proper (local) circular velocity of ∼8.11
× 104 km s−1, or 0.271 c, corresponding to ∼14 µas yr−1 as seen from Earth, slowing
down to 1.72 × 104 km s−1, or 0.057 c (∼3 µas yr−1) at apoapse. If the secondary
BH in OJ287 were visible at 345 GHz, the ngEHT should be able to easily detect its
absolute astrometric motion, while the motion of the primary would be ∼20 times
smaller, and likely not detectable even with a decade-long observing campaign. The
ISCO radius for OJ287 is ∼1100 AU or ∼1.2 µas, and therefore unresolvable by the
ngEHT.

An alternate explanation for OJ287 has also been proposed. Detailed investigation
of 120 epochs of VLBA observations of this source reveal that viewing angle changes
due to a putative precessing (and nutating) jet could cause the morphological changes
of the pc-scale jet as well as the radio variability that is observed (Britzen et al., 2018).
The jet would complete a full orbit in projection in about 22 years, twice the dominant
time scale observed in the optical waveband. It is likely that the optical emission is
also produced by the jet. While a binary BH model or the Lense-Thirring (LT) effect
is required to explain jet precession, the piercing of the accretion disk by a secondary
BH is not required in this scenario. By contrast, the obvious stability of the jet and jet
motion do not support the plunging SMBHB interpretation, as it is incompatible with
regular disturbances of the accretion disk. Britzen et al. (2023) show that the phase of
the precession relates to the variability of the Spectral Energy Distribution (SED). The
precession model for OJ287 is further supported by other, independent observations.
Komossa et al. (2023) failed to detect the 2022 outburst predicted by the “plunging”-
model. Instead, OJ287 was at low optical–UV emission levels, declining further into
November. The predicted thermal bremsstrahlung spectrum was not observed either, at
any epoch. Furthermore, the authors estimate a SMBH mass of 108 M⊙ for OJ287 and
confirm the mass estimate by Britzen et al. (2018) based on the precession model. Yuan
et al. (2023) validate the plausible predictions of a jet with precession characteristics
in OJ287 based on an archival study of VLBI observations at 2.3, 8.6, 15, and 43 GHz.
The first GMVA plus ALMA observations reveal a compact and twisted jet extending
along the northwest direction, with two bends within the inner 200 µas, resembling a
precessing jet in projection (Zhao et al., 2022). Recent Space VLBI observations with
RadioAstron at 22 GHz with an angular resolution of ∼ 150 µas, or ∼ 40 rg) spatial
resolution, add to this physical picture a high brightness temperature, qualitatively
confirming violent processes in the inner part of the source (Kim et al., 2023). VHE
flaring emission in OJ287 has been investigated by, e.g., Lico et al. (2022).
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ngEHT observations could resolve the question of which of these clearly conflicting
and competing models for OJ287 provide a proper description of the source. While
OJ287 may be the favorite SMBHB in our own backyard for the ngEHT, our current
understanding of the assembly history of BHs suggests that multiple resolvable sources
ought to exist. At present, there is an ongoing effort to find and characterize additional
viable SMBHB candidates besides OJ287.

We briefly review the possibilities for the detection of SMBHBs via a range of
observational techniques. As we have noted above, the ngEHT will have sufficient
angular resolution to identify sub-parsec SMBHBs at any redshift, providing a powerful
complement to GW observations of galaxy mergers from PTAs and future planned
facilities like LISA. At the present time there are several theoretical uncertainties with
predictions of the merger rates stemming from our incomplete understanding of the
astrophysical processes that effect coalescence, as well our lack of knowledge about
the abundance and masses of initial BH seeds. This translates directly into a lack
of secure predictions for the separation distribution for SMBHBs. This is once again
where data from the ngEHT could significantly alter and constrain theoretical models,
permitting better-calibrated subsequent predictions. While the ngEHT is not a survey
instrument, it will nevertheless be able to observe many binary candidate sources by
utilizing sub arrays. In addition, key synergies with the next-generation VLA (ngVLA)
can effectively address the limited field of view of the ngEHT.

6.1 Multiple supermassive black hole systems

Studies of binary and multiple stellar systems and their evolution have revealed that a
significant proportion of stars are in multiples Tokovinin (1997), with substantial evi-
dence that some binary stellar systems were likely former triple systems (Eggleton and
Yakut, 2017). It is known from planetary systems and close binary stars that therein a
third body orbiting the binary impacts the orbit of the inner binary. This astrophysi-
cal coupling process is referred to as the von Zeipel, Kozai and Lidov mechanism (von
Zeipel, 1910; Kozai, 1962; Lidov, 1962), and it explains a variety of phenomena (Naoz,
2016). The mechanism is effective in the merger processes with the changes it can cre-
ate in the inner orbit under certain conditions (Antonini et al., 2017; Stephan et al.,
2016).

A few candidates for multiple SMBH triple systems have been identified in recent
years, e.g., SDSS J0849+111 (Pfeifle et al., 2019; Liu et al., 2019), J150243.09+111557.3
(Deane et al., 2014), NGC 7733-7734 (Yadav et al., 2021), and SDSS J1056+5516
(Kalfountzou et al., 2017). The presence of another SMBH sufficiently close to, and in
orbit around, a SMBHB system can affect the orbit of the binary SMBH and accelerate
the merger process significantly. As a result of the existence of a third SMBH in the
vicinity, an oscillation will occur between the orbital eccentricity of the SMBHB in the
inner orbit and the angle between the orbital planes of this and the outer SMBH. This
complex interaction will play a crucial role in the convergence and merging of paired
SMBHs and may shorten the merging times significantly. Of course, when examin-
ing this mechanism we note that some SMBHBs observed today could potentially be
residuals of former triple systems. Simulations suggest that such tiered mergers could
play an essential role in the evolution of galaxies (Begelman et al., 1980b; Khan et al.,
2016a; Hopkins et al., 2008).
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In this context, such sufficiently close triple SMBH systems, whilst observationally
rare, if and when detected would provide an extraordinary opportunity to study a
distinct set of astrophysical processes which serve to catalyze SMBHB mergers. While
SMBH mergers are an essential ingredient in galaxy evolution, close triple SMBHs offer
a unique opportunity for studying the dynamics of three-body interactions in GR. In
a hierarchical triple SMBH system, the orbital eccentricity of the binary system in the
inner orbit will exhibit variations over time, allowing it to grow to very large values
(e.g., e > 0.9). The effect of the impact of a third SMBH seems likely to be detectable
with low-frequency GW observations, especially at the periphery (Merritt, 2013). Any
direct evidence that can be provided from low-frequency GW observations for ngEHT
triple candidates will in turn provide us with new information concerning binary SMBH
coalescence.

6.2 Taxonomy of SMBHBs
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These objects are mostly selected by their observed signatures, which could in
principle overlap. At 1 mm wavelengths a 25–meter radio telescope has a beam width
of ∼8 arcseconds. In this instance the primary systems of interest are pairs of objects
that could be observed simultaneously within the same beam-width. Most of these
correspond to classical astronomical binaries, but the relativistic nature of the orbiting
objects introduces new effects and additional sets of observable quantities that are not
available with main sequence stars. We list the best candidate sources in Table 3.

For some of these classes of binary candidates there may be degeneracies with regard
to the physical origin of the observed periodic signal. Jet precession as well as periodic
light-curve flaring can also be caused by the LT effect due to the frame-dragging of the
rotating Kerr BH (Thirring, 1918; Lense and Thirring, 1918).

6.2.1 Telescopic binaries

In telescopic binaries the primary and secondary can both be seen directly and their
motion measured. For the ngEHT, this would require both SMBHs to be radio-loud.

• Image or visibility stacking with source frequency phase referencing (SFPR), e.g.,
Rioja et al. (2011), which could improve the detectability of weaker targets. This
would help to reveal the secondaries in some sources, especially if there are ngEHT
or other independent estimates of the orbital parameters.

• If observable they would represent the “gold standard” in SMBHBs.

• Large separation binaries are likely to be easily resolvable by the ngEHT out to
cosmological distances, but their periods will be ≫ 1 per decade and their motions
will therefore be harder to detect.

The ngEHT with a nominal angular resolution in the range of 5–15 µas and monitoring
duration ranging from weeks to ∼10 years will be able to study telescopic SMBHBs
within a broad range of masses and orbital geometries, at various redshifts inaccessible
to other existing and prospective observatories.

6.2.2 Astrometric binaries

With an astrometric binary only one source is typically visible, and the binary is
detected through a periodic “wobble” in the positions of its radio-loud jets, jet com-
ponents, core, or BH shadow. From a detected periodic occurrence one can infer that
the perturbation occurs due to the gravitational influence of an unseen companion.
At least one BH within the binary system is required to be radio-loud, which means
it is required to have a radio-loud jet. For this reason the expectation is that more
ngEHT binaries will fall into this category than telescopic binaries. The best candi-
dates are those AGN where the jet precesses (e.g., OJ287, 3C 84) or/and where periodic
flux-density changes are observed (e.g., Mrk 501, 3C 454.3), and where the model pa-
rameters predict close separations (see Table 3). Astrometric binary candidates have
been proposed for, e.g., 3C 279 (Abraham and Carrara, 1998), 3C 273 (Abraham and
Romero, 1999), PKS 0735+178 (Britzen et al., 2010), 2200+420 (BL Lac) (Caproni
et al., 2013), PG 1553+113 (Caproni et al., 2017), 3C 345 (Caproni and Abraham,
2004b), 3C 120 (Caproni and Abraham, 2004a), 1308+326 (Britzen et al., 2017), TXS
0506+056 (Britzen et al., 2019a), PKS 1502+106 (Britzen et al., 2021). Recently, a
candidate SMBHB J2102+6015 has been identified on the basis of astrometric VLBI
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monitoring (Titov et al., 2023). If confirmed as a SMBHB, this source would become an
example of a synergistic multimessenger bridge between ngEHT and prospective GW
facilities (Gurvits et al., 2023). All cases of astrometric SMBHB candidates need to
demonstrate noticeable motion in order to be detected, and thus will observationally be
selected by both the period and the angular separation of the binary. Long-term VLBI
monitoring can resolve the orbital motion of a binary (D’Orazio and Loeb, 2018a) and
this can be achieved both in the image and visibility domains.

We note two practical features of potential applications of the ngEHT for studies
of astrometric binaries.

• An extra factor of (1 + z) between the proper motion distance and the better
determined angular diameter distance should be taken into account. The same
factor results in the “time dilation” of the observed period of the binary over the
actual period in its rest frame.

• As opposed to the case of telescopic binaries considered in Sec. 6.2.1, detection of an
astrometric SMBHB by the ngEHT would require only one component of the binary
to be a sufficiently strong radio emitter. In this case, the SMBHB observational
signature would be a peculiar astrometric behavior or “wobbles” on an angular scale
smaller than the nominal array resolution. An example of such an “astrometric”
detection of a potential SMBHB is offered by the source J2102+6015 (Titov et al.,
2023).

Astrometric signatures of precession in AGN jets persist on long time-scales and are
comparable to clocks or metronomes. Britzen et al. (2023) argue that most of the
blazar variability (morphology as well as light-curve) may be due to precession-induced
phenomena (except for M87, Sgr A* and TeV blazars). These signals should not be
confused with other interesting fluctuations due to plasma instabilites (current-driven
or kink) of the flow which develop and disappear on shorter time scales and are lower
energy phenomena which do not dominate the observational data.

6.2.3 Spectroscopic binaries

Spectroscopic binaries are detected as either “single-peaked” sources (with spectral
emission from only one source) through the detection of periodically varying spectral
line frequencies, or as “double-peaked” sources with two sets of spectral lines, one from
each source.

• Single-peaked sources can in practice only be detected if the orbital period is short
enough to see periodic variations in spectral frequencies.

• Double-peaked spectral source lines would have frequency separations changing
with the orbital phase, but could be detected as binaries even for very long orbital
periods. Rubinur et al. (2019) surveyed 20 double-peaked AGN in [O III] at ∼500
nm with the VLA whilst searching for telescopic binaries and found that “one of
them is a dual AGN (DAGN), while the other two could be either DAGN or AGN+
star-forming nuclei pairs.” An imaging snapshot ngEHT survey of double-peaked
radio sources with indications of compact cores might be an extremely efficient
detection strategy to find additional binary candidates for further study.

• The large spectral shifts that would be found with sources approaching inspiral
(at ∼ 0.3 c) suggests that this method should be utilized as a means of finding
candidate multi-messenger binaries.
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• An optical search for broad absorption line (BAL) quasars with periodically chang-
ing line frequencies might also be an efficient way to find binaries nearing inspiral.

We note that “discoverability” of spectroscopic binaries with the ngEHT might be
problematic due to the likely long orbital periods (thousands of years). However, a
potential ngEHT role in studies of spectroscopic binaries discovered by other facili-
ties/techniques is warranted by the unique resolving power of ngEHT imaging in the
otherwise unreachable range of angular scales.

6.2.4 Relativistic transiting binaries

Transiting binaries would appear superficially as photometric binaries, with quasi-
periodic flaring. However, the changes in brightness would be because of “self-imaging”,
one component imaging the photon orbit region of the other (Davelaar and Haiman,
2022; Davelaar and Haiman, 2022; Kelley et al., 2021).

• The photon orbit region of one component would be magnified by the other during
the transit due to lensing. If the transit was exact, this would include a central
drop, as the focal point passed over the shadow itself.

• Transiting binaries would make it possible to accurately estimate the mass, orbital
phase, and the non-Keplerian variations of the system’s orbital parameters, and
also permit super-resolving the shadow region of each component. A transiting
binary with two visible sources (i.e., one that is also an optical binary) would offer
a very sensitive laboratory for the study of fundamental gravitational physics.

6.2.5 Reverberation binaries

SMBHs act as omni-directional mirrors, reflecting some part of incoming light from any
direction to any other direction, possibly after multiple orbits around the BH. These
multiple orbits impose delays and thus temporal correlations on radiation received by
a remote observer (Chesler et al., 2021; Andrianov et al., 2022). Such binaries could
be detected in the time domain, through the study of time delays due to photon orbits
around the two photon spheres in a binary system. This section assumes Schwarzschild
BHs, and approximation which does not change the qualitative nature of the BH re-
verberations.

No radiation is received from the BH shadow itself, but around the shadow there
is a series of increasingly sharp sub-rings, produced by photons that travel around the
BH multiple times near the bound photon orbit (see Chesler et al., 2021, and Sec. 2).
Suppose there is a flare in the accretion disk of a solitary SMBH: a distant observer
would first see a primary burst from the direct light (n = 0), then a delayed lensed
burst coming from light partially orbiting the BH, delayed by a time < T (n = 1),
followed by a series of n > 1 successively delayed light echoes, each separated by T.
In the Schwarzschild approximation, for Sgr A* the scale is T∼668 s (11.1 minutes),
while for M87* the scale is T∼1.03 ×106 s (∼12.0 days).

There are several different ways that reverberation binaries may be detected and
studied. Denoting the two binary components by “1” and “2”, we start with the as-
sumption that only component 1 is directly visible from the Earth.

• A simple reverberation binary could be detected through the presence of two sets
of autocorrelations in the source photometry. If the components have very different
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masses the two correlation trains would be well separated in delay space (e.g., 44
days versus 9 hours for the red shifted components of OJ287) and thus could be
separated even for a one pixel source.

• If both components 1 and 2 are visible from Earth, the physical separation between
1 and 2 will introduce yet another delay due to path length differences in the
time correlations. For example, for OJ287 the T = 44 day delay for one photon
orbit of the primary is comparable to the one-way propagation delay between the
components, which varies between ∼22 days and 132 days with the orbital phase.
Observing a reflection of one component at another would therefore provide a direct
determination of the distance between the primary and secondary, and thus a novel
way of determining the inclination of the orbit.

• Suppose the component 2 jet is not bright enough to be seen directly from Earth,
but its jet is pointed directly at component 1 during its orbit (this would happen
twice during each orbit, due to the dual sided nature of SMBH jets). This could
then cause multiple quasi-periodic flares: from where the photon flux from the
component 2 jet reaches component 1, the charged particle flux from component
2’s jet reaches component 1 and excites its jet, alongside the various delays of the
component 1 echos.

• The delay of these secondary echos (the light travel time plus the partial photon
orbit echo) will vary with the orbital phase of the two components, both because the
orbital distance can be changing, and because the length of the n = 1 photon orbit
will change with orbital phase. If the SMBH orbit is circular but not aligned with
component 1’s equatorial rotation plane, it may be possible to use the variation in
this total delay to determine the spin of component 1.

6.3 Multi-messenger detection of supermassive black hole binaries

SMBHB systems must emit GWs accompanied by electromagnetic counterparts, espe-
cially when they are in gas-rich environments (Schnittman, 2011; Dotti et al., 2012;
Burke-Spolaor, 2013; Kocsis et al., 2008a) which could be a result of galaxy mergers
(Sanders et al., 1988; Mayer et al., 2007).

We anticipate scientific synergies between the ngEHT and several key multi-
messenger facilities that are already operational, as well as those that will become
operational concurrently with the ngEHT.

• The EHT (EHT Collaboration, 2019a) is already probing the SMBHB candidate
OJ287 with highest resolution at 230 GHz. Quasars exhibiting broad emission lines
with ≥ 1000 km s−1 velocity offsets with respect to the host galaxy rest frame have
been discovered. These velocity-offset broad lines could be due to the dynamics of
a SMBHB (e.g., Breiding et al., 2021).

• The ngVLA will be able to probe these system at angular scales as small as ∼ 3
mas–80 µas for the respective frequency range of 2.4–93 GHz (Astronomical Society
of the Pacific Conference Series, 2018).

• While Gaia observations use a novel technique to search for binary quasars at
previously unreachable sub-kpc scales (e.g., Shen et al., 2021), the unprecedented
near-IR sensitivity, spatial resolution, and spectral coverage of the James Webb
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Space Telescope (JWST) will enable detailed study of the gas dynamics in binary
quasars at high redshifts (Ishikawa et al., 2021).

• The Athena (Advanced Telescope for High ENergy Astrophysics) mission has the
broad aim of understanding the hot and energetic universe and will help unravel
accretion processes and jet physics in SMBHBs (Piro et al., 2022).

• The Cherenkov Telescope Array (CTA), a next generation ground-based very-high-
energy gamma-ray observatory, will be a key instrument for multi-messenger astro-
physics in the very-high energy (VHE, i.e., > 100 GeV) range (Cherenkov Telescope
Array Consortium et al., 2019). Due to its unprecedented sensitivity, rapid response,
and capability to monitor a large sky area via a scanning mode of operation, SMBHs
might be detectable by their specific flaring properties.

• On-going PTA projects aim at detecting GWs in the nanohertz band, dominated
by the gravitational radiation emitted by SMBH binaries with masses in the range
108–1010 M⊙ inspiraling at sub-parsec separations (∼ 0.01pc).

• Future space-based GW detectors such as LISA (Amaro-Seoane and et al, 2017),
Tianqin (Luo and et al, 2016), and Taiji (Hu and Wu, 2017) are designed to detect
the millihertz GWs of SMBH binaries with masses in the range 105–107 M⊙,
emitting during their late inspiral and merger phases.

There are many proposed channels through which SMBHBs could emit EM counter-
parts, either simultaneously with their GW emission phase or afterward. The interac-
tion between a SMBH binary with the gaseous disc in a gas-rich environment is likely
to be the primary mechanism for the dissipation of orbital angular momentum by a
SMBH binary in its final parsec stage (i.e., shrinking down from several parsec to sub-
parsec separations, or, during the GW-emitting stage), effecting the merger within a
Hubble time (see, e.g., Khan et al., 2016b). If one or both components of the SMBHB
continue to accrete gas the coalescing binary may emit elctromagnetic counterparts
with a periodic variability that would be detectable both in the PTA band (see e.g.,
Kelley et al., 2019, for reviews) and in the LISA band (Kocsis et al., 2006; Armitage
and Natarajan, 2002). Some of the SMBHB candidates detected with electromagnetic
counterparts are listed in Table 3, and the proposed emission models are discussed in
Sec. 6.4.

The joint detection of SMBHBs with GWs and electromagnetic counterparts stands
to fundamentally transform our understanding of the important role played by astro-
physics, and will offer cosmological probes via a new class of standard sirens while also
revealing fundamental aspects of gravity (see Schnittman, 2011; Kelley et al., 2019;
Mangiagli et al., 2020, for reviews).

6.3.1 Multi-messengers with pulsar timing arrays

A stochastic isotropic GW background (GWB) is predicted from the GWs emitted by
the population of SMBHBs at sub-parsec separations across the whole universe. The
GWB detected by PTAs will be characterized by a common spectrum and interpulsar
spatial correlations: the Hellings & Downs, or HD correlations (Hellings and Downs,
1983), which is the ‘smoking gun’ signature for GWB signals (Tiburzi et al., 2015).
Recently, evidence for a spatially uncorrelated common-spectrum process was detected
in the 12.5 yr NANOGrav data set (Arzoumanian et al., 2020), and later confirmed by
the Parkes PTA (Goncharov and et al, 2021), the European PTA (Chen et al., 2021),
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and International PTA (Antoniadis et al., 2022) in their corresponding data releases.
The GWB production process is modelled as an additional time-correlated term with
a similar power spectrum with GWB in all of the pulsars. While evidence is currently
lacking in support of the existence of spatial HD correlations (Arzoumanian et al.,
2020; Goncharov and et al, 2021; Chen et al., 2021; Antoniadis et al., 2022), we cannot
yet declare a detection of GWB. The reported signal offers a hint of the existence of
a GWB from SMBHBs, but on-going analysis of the 15 yr data is likely to improve
matters (Middleton et al., 2021; Mingarelli, 2019). The current non-detection is already
providing interesting constraints on both SMBH binary populations (Graham et al.,
2015; Kelley et al., 2019) as well as on individual candidates (Jenet et al., 2004). With
monitoring by the SKA, even a small number (∼ 20) of high-quality millisecond pulsars
will be able to deliver valuable information about the redshift evolution of SMBHBs.
Calculations show that within 30 years of operation, about 60 individual SMBHB
detections with z < 0.05 and more than 104 with z <1 can be expected (Feng et al.,
2020).

6.3.2 Multi-messengers with LISA

Contrary to PTAs detecting GWs of individual SMBHBs in the local Universe (z <
0.5), LISA, with its high GW detection sensitivity, could reach to the highest redshifts
over a large mass range (Amaro-Seoane and et al, 2017). Additionally, the detection of
the full chirping signal of LISA sources will help to break the degeneracy between the
chirp mass and luminosity distance for SMBHBs. The ability to measure the luminosity
distance and sky-position of SMBHBs with the full inspiral-merger-ringdown waveform
means LISA could make a relatively precise prediction of the source locations (Cutler,
1998; Barack and Cutler, 2004; Vecchio, 2004; Berti et al., 2005; Holz and Hughes, 2005;
Kocsis et al., 2008b; Mangiagli et al., 2020). Parameter estimation from the inspiral
waveform could provide an early warning system for upcoming merger events, on the
order of a week to up to a month in advance of the merger itself (Holz and Hughes,
2005; Lang and Hughes, 2008; Kocsis et al., 2008b; Mangiagli et al., 2020), thereby
enabling monitoring and detection of any associated electromagnetic counterparts. The
predicted merger events of SMBH binaries detectable by LISA is uncertain at present
and stands between about 5–100 per year (Klein et al., 2016) as it is closely related to
the poorly determined galaxy merger rates and the ill-determined dynamical evolution
time scales of SMBHBs in their post-merger environments.

6.3.3 The role of VLBI in multi-messenger studies

Despite the various multi-band detections of SMBHB candidates at separations close to
or larger than a parsec, sub-parsec scale-bound SMBHBs can only be spatially resolved
with radio VLBI. The array size and observing frequency sets a fundamental limit on
the ability of a VLBI network to resolve a telescopic binary. For a well distributed
network, VLBI image resolutions primarily depend on the size of the network, and are
thus expected to be ∼ 50, 20 and 15 µas at the proposed observing frequencies of 86,
230 and 345 GHz, respectively. For a source at a redshift of z = 1, these correspond
to 0.41, 0.16 and 0.12 pc, respectively. These resolution limits are all smaller than the
radius where dynamical accretion disk drag is thought to become ineffective (leading to
the so-called “final parsec” problem), but much larger than the ISCO of ∼0.3 milliparsec
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for a 109 M⊙ SMBHB at that redshift. A SMBHB of that mass would therefore need
to be at z ≲ 0.03 in order for its ISCO to be resolveable by the ngEHT.

The array size and observing frequency also sets a limit on the astrometric accuracy
of even in-beam SMBHB astrometry. The candidate binary source 0402+379 (z =
0.055) was observed by the VLBA over 12 years and at frequencies between 5 and
22 GHz, revealing a motion consistent with a binary orbit with an orbital velocity of
0.0054 c± 0.0003 c and an orbital period of 3 × 104 yr, implying a total binary mass of
1.5 × 1010 M⊙ (Bansal et al., 2017). This source is likely an astrometric binary with a
separation of ∼7.5 pc. Astrometry of this source or other parsec-scale candidate sources
with the ngEHT could be significantly more precise, but it would likely be impossible
to observe non-linear motions (and thus fit an orbit) with the planned duration of the
ngEHT program.

The enhanced resolution of the ngEHT is promising to resolve SMBHBs at sub-
parsec separation through relative astrometry (D’Orazio and Loeb, 2018a; Fang and
Yang, 2022). By fitting the time-varying visibility function of point-like emitters, one
can in principle recover the orbital parameters of SMBHBs (Fang and Yang, 2022). The
joint detection of SMBHBs with VLBI and PTAs will help to break the degeneracy be-
tween characteristic parameters (Fang and Yang, 2022). In the future, multi-messenger
and/or multi-band detections of SMBHBs will enable us to confirm or rule out candi-
date sources.

6.4 Emission models of supermassive binary black holes

The ngEHT as a VLBI array will measure complex visibilities in the Fourier domain
depending on their mutual separation and its orientation with respect to the source
(i.e., Earth aperture synthesis). Any theoretical model must make predictions for these
or derived data products. We discuss several distinct modeling routes for the emission
from a binary BH source and discuss prospects for detection and characterization of
the source parameters.

6.4.1 Hybrid modeling

A critical and unavoidable complication for the ngEHT will be that any binary source
will produce other emission components that are not directly related to the orbital
motion of the BH binary. This will in general cause a mismatch between data and
model that must be investigated and where possible mitigated. With a hybrid imag-
ing+modeling technique (see Broderick et al., 2020b) the ngEHT will be able to harness
its exquisite signal-to-noise ratio to search for even faint binary components buried in
diffuse emission beyond the nominal resolution.

6.4.2 Model selection: binary vs Lense-Thirring

A Bayesian framework like Themis allows for a statistically meaningful way to se-
lect models based on fit quality and degrees of freedom via the Bayesian evidence or
standard information criteria (BIC, AIC, etc.). More concretely, given two competing
emission models, both can be fit to the ngEHT or simulated data and the statistically
preferred model can be inferred.



Fundamental Physics Opportunities with the ngEHT 95

6.4.3 Simple emission models

A simple but effective emission model that is implemented in Themis (Broderick et al.,
2020a) is a double Gaussian source on a circular orbit. Obvious extensions to eccentric
and PN orbits are planned. For any given value of the free parameters the model
can generate the set of complex visibilities as a function of observing time and uv
coordinate. These simple emission models do not rely on the detailed physical properties
of the source and instead utilize a simple representation of a physical scenario via a
geometric approach.

6.5 Simplified physical models: approximate, semi-analytic emission models

In moving towards more realistic modelling approaches one can develop phenomeno-
logical models utilising semi-analytic schemes, e.g., by considering a SMBBH system
orbiting within semi-analytic accretion disk model of the surrounding circumbinary
disk.

The simplest model of a binary BH is an analytic spacetime metric which is a
superposition of two stationary Kerr BHs, with a binary separation large enough to
ensure that the spacetime is approximately Minkowskian at the centre of mass of the
system and tidal and secular effects induced between the binary pair are negligible.
Whilst such a metric does not formally satisfy the EFEs, we are only concerned with
mildly relativistic orbital velocities and the spins of the BHs are anti-aligned such
that precession is formally zero and the binary orbit is confined to a two-dimensional
plane (adiabatic approximation). Since ngEHT binary targets will have to contain
SMBHs with orbital separations sufficient large that the distinct BHs can be spatially
resolved, the above assumptions are appropriate. Furthermore, this spacetime metric
accurately incorporates the effects of gravitational self-lensing of the binary pair, which
is a key observable from synchrotron-emitting plasmas in future ngEHT images. The
morphologies of self-lensing flares (SLFs) using a superimposed binary BH metric have
been studied by Davelaar and Haiman (2022). In the case where the binary orbit
is observed nearly edge-on, a distinct feature in the light curve is imprinted by the
shadow around the larger of the two BHs. This method of SLF measurement could
make it possible to infer and extract BH shadows that are spatially unresolvable by
high-resolution VLBI.

6.5.1 Physical models: GRMHD simulations of accreting SMBH binaries

GRMHD simulations in combination with general-relativistic radiative transfer
(GRRT) codes (e.g., Dexter and Agol, 2009; Younsi et al., 2012; Chan et al., 2013;
Younsi and Wu, 2015; Pu et al., 2016; Dexter, 2016; Mościbrodzka and Gammie, 2018;
Chan et al., 2018; Bronzwaer et al., 2018) are another approach for modeling emission
from SMBHBs. In contrast to geometric and semi-analytic modeling, they aim to
model the observable phenomenology from ‘first principles’ by directly solving the
equations that describe the behavior of plasma, magnetic fields, and radiation, in the
vicinity of BHs. While this is desirable from the point of view of physical accuracy,
their main disadvantage is their computational cost, which makes it impossible to
sample the parameter space as efficiently as the aforementioned approaches. This
comes in large part from the necessity of simulating small length and time scales, such
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Fig. 28 GRMHD simulations of SMBHBs. Top: simulation viewed in in the equatorial plane
for a binary with mass ratio 1:4, colored by logarithm (base 10) of plasma rest mass density
(left) and normalized bremsstrahlung emissivity (jbrem, right). A spiral shock is produced by
the smaller mass secondary, increasing jbrem. Bottom: the structure of the jet (colored by
magnetization of the plasma) for three cases with different mass ratios: (a) 1:1 with zero spin,
(b) 1:4 with zero spin, and (c) 1:4 with spin a∗ = 0.7 for both BHs. The jets form a “braid”
structure for the 1:1 case, while the other cases show a more disordered structure (Olivares
et al., 2023, in prep.).
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Fig. 29 Proxy for synchrotron emissivity at 230 GHz (equation (18) of Porth et al., 2019) for
a GRMHD simulation of accretion onto a binary with mass ratio 1:4 and aligned spins with
a∗ = 0.7, viewed in the equatorial plane (left) and meridional plane (right). It is possible to
observe emission from the spiral shock, and contrary to the Bremsstrahlung case (c.f., Figure
28), the primary appears brighter than the secondary (Olivares et al., 2023, in prep.).

as those required to resolve the MRI turbulence on horizon-scales, alongside the much
larger scales of the system such as those governing the dynamics of the binary.

While GRMHD simulations become prohibitive for binaries with large separations,
where semi-analytic modeling can be sufficiently accurate, they can yield more detailed
information at smaller separations, where the timescales of the accretion flow and the
binary dynamics become comparable. This makes the two approaches complementary.
GRMHD simulations can also provide information on the connection between large
scale features observed in SMBHB candidates and the physical processes originating
from within them, which is very difficult to establish using semi-analytic models.

In addition to considering the plasma as a test fluid which does not back react on the
metric, GRMHD simulations of SMBHBs in the literature use different approximations
that are valid at different separations and evolutionary stages of the binary.

At large binary separations, a metric constructed from the superposition of two
boosted Kerr BH spacetimes approximates sufficiently well the corresponding solution
to the EFEs. GRMHD simulations on spacetimes constructed in this way have been
performed by Combi (2021) and explored in a series of papers (Armengol et al., 2021;
Combi et al., 2022; Gutiérrez et al., 2022; Noble et al., 2021). The approximation is
shown to be accurate up to separations as small as ∼ 10 rg, when the BHs are moving
with trajectories prescribed by PN equations. From the observational point of view,
among the most interesting predictions is a periodic modulation in lightcurves caused
by an asymmetric accretion disk, which in principle could be used to detect SMBHBs
and constrain their masses (Noble et al., 2021).

In order to obtain higher accuracy for the spacetime in a regime where gravitational
radiation can still be neglected, another approach is to use a conformal thin sandwich
approximation (Gold et al., 2014; Olivares et al., 2023, in prep.). This enables finding
a SMBHB spacetime that fulfills the Einstein constraints and is stationary in a ref-
erence frame co-rotating with the binary. Consequently, standard techniques used for
GRMHD simulations in stationary spacetimes can be used. Figure 28 displays snap-
shots of simulations of binaries performed this way for different values of the mass
ratio and spin, reproduced from Olivares et al. (2023, in prep.). They show some of the
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features that are expected in accretion onto SMBHBs, such as spiral shocks produc-
ing bremsstrahlung radiation (top panels), and helical jets that appear more ordered
for the equal mass case (bottom panels). The spiral shock may also be detectable in
synchrotron emission at 230 GHz, as shown in Figure 28, which employs a proxy for
synchrotron emission described in Porth et al. (2019).

When gravitational radiation becomes dominant as a mechanism for decreasing the
orbital separation, the spacetime needs to be evolved using full numerical relativity.
Besides being more physically accurate, this permits simultaneous retrieval of the GW
signal and the electromagnetic counterpart, e.g., as done in Gold et al. (2014).

After the merger, the spacetime settles down to that of a Kerr BH. The spacetime
is stationary again in a frame where the BH is at rest. However, the accretion flow will
likely still show signatures of the recent merger. It has been shown that after the release
of linear momentum in the form of GWs, the resulting BH can have a residual recoil
velocity from hundreds to thousands of kilometers per second (Baker et al., 2007). This
can produce spiral shocks emmitting Bremsstrahlung radiation, indicating a recent
merger. Simulations of these electromagnetic counterparts have been performed by
Zanotti et al. (2010) and Meliani et al. (2017b).

The ngEHT will bring the possibility to refine theoretical models of circumbinary
accretion flows by allowing comparison of simulations with higher precision observa-
tions. Possible directions for simulation-based modeling of these systems in the near
future are to specialize to the parameters of the most promising SMBHB candidates,
and to refine predictions of observational signatures that enable identification at dif-
ferent stages in their evolution.

6.6 Summary of prospects of probing SMBH binaries with the ngEHT

Supermassive BH binaries in sub-parsec separation phase evolution located at Gpc
distances typically have angular separations of 1–10µas. This close separation is be-
yond the current resolution of most telescopes. The ngEHT, with its higher resolu-
tion, promises to resolve these supermassive BH binaries through relative astrometry
(D’Orazio and Loeb, 2018a; Fang and Yang, 2022).

To track the orbital path of the components in the binary, both individual SMBHs
are required to be bright enough to be detectable independently, or if one component
is bright, then a calibrator nearby is necessary, as it will be required for successful rela-
tive astrometry. The orbital period could be inferred from the regularity of the periodic
variations, which is possible when the orbital period is shorter than the detection dura-
tion of the ngEHT lifetime. The upper limit on the detection duration is the designed
lifetime of ngEHT, which is 10 years. Furthermore, the validity of the second criterion
requires that the mm-wavelength emission region (roughly the light-travel distance
within the duration of the shortest mm-variability timescales) should be smaller than
the binary separation. It is suggested that the low-luminosity AGN (LLAGN) with
mm-emission regions comparable to the size of the event horizon meet the requirement
of the variation timescale in the emission region (D’Orazio and Loeb, 2018a). By mod-
eling the fraction of SMBHBs in the distribution function of LLAGN, D’Orazio and
Loeb (2018a) predict that the abundance of SMBHBs resolvable by ngEHT at redshift
z ≤ 0.5 is about 100, assuming the orbital period is less than the ten-year lifetime
ngEHT.
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The quantity measured by EHT is the visibility function, which is the Fourier trans-
formation of the intensity function of the image, realized by the technology of VLBI.
In the LLAGN scenario of SMBHB candidates, the emission region of the individual
sources is small compared to the binary separation. The simplest assumption for the
intensity function of the components is to model them with point-like luminosities.
In this point-like luminosity approximation, the amplitude of the visibility function
is proportional to

√
I1

2 + I2
2 + 2I1I2 cos 2πu · θ, where I1 and I2 are the intensity

amplitudes for the two components, and u and θ are the baseline vector and angular
separation vector of the binary in the sky plane, respectively. Due to the orbital motion
of the binary, the projected relative position vector θ changes its direction with respect
to the baseline u, and varies in amplitude if there is eccentricity or inclination in the
binary orbit. Thus the variation of the visibility function is modulated by the binary
orbital motion with the same period. By considering the binary intensities as point-like
emitters, Fang and Yang (2022) make a proof-of-concept estimate that the orbital mo-
tion of the SMBHB could be traced and recovered by fitting the time-varying visibility
function. They report that orbital tomography of the binary orbital motion is possible
even if the binary orbital period is larger than the lifetime of ngEHT (Fang and Yang,
2022). This could greatly increase the orbital period or semi-major axis of SMBHBs
resolvable by ngEHT, and as a consequence increase the source abundance from ∼100
up to several 1000s, as inferred form the LLAGN scenario modeled by D’Orazio and
Loeb (2018a).

6.7 Challenges & future prospects

To prepare for future detections and monitoring of SMBHBs with the ngEHT, further
detailed simulations are required.

• The preparation of simulations testing the imaging quality of different ngEHT-
arrays (e.g., number of telescopes) using different geometric models will be pivotal.
In particular, emission blobs with various parameters (e.g., different intensities,
angular separation, sizes, field of view) and their reconstructed images will need to
be probed and studied in detail.

• Orbital and light curve tomographies will need to be ray-traced whilst taking ad-
ditional physical effects and interactions into account.

• Modeling of different types of binary systems, i.e., two radio-loud objects versus a
combination of a radio-loud and a radio-quiet object, will be essential. The role of
jets, circumbinary accretion disk, and other radiating material media for specific
candidate sources will need to be prepared. In this context, inspecting the spe-
cific signatures and time scales of LT-precession and helical magnetic fields will be
important.

• Simulation of lensing signatures will be of crucial importance, i.e., if the accretion
disk has (spiral) structure visible in the radio/synchrotron emission, the ngEHT
may be able to see that structure lensed in the BH shadow (i.e., the emission
is a gravitationally-lensed image of the accretion disk, which would have a spiral
structure here). Further self-lensing effects with the ngEHT need to be studied.

• The influence of GW emission on the closest pairs and their appearance in ngEHT
imaging also needs to be explored further.
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Conclusions

The past four years have been a short yet exciting time for BH physicists, first with the
EHT measurement of the M87* SMBH shadow in 2019, and shortly thereafter with the
measurement of Sgr A*’s shadow in 2022. These pioneering measurements heralded the
start of a new era in BH research and have enabled, for the first time, direct imaging
of matter in the vicinity of event horizons. In the years ahead, improvements will be
made in the instrument specifications of telescopes within the interferometric array,
which will in turn open several new avenues for exploring physical phenomena around
BHs. This review provides an overview of the major fundamental physics themes and
current status of BH imaging observations which will guide the development of a future
ngEHT array and enable significantly more sensitive studies of SMBHs.

In the context of these future improvements we have summarised the current status
of several key science topics underpinning BH imaging studies: studies of the photon
ring, measurement of BH mass and spin, searches for ultralight fields, tests of GR and
Kerr, and potential studies of binary SMBHs. In the years to come, advances will be
made in both the sensitivity of measurements, and in the data analysis techniques
which are applied to these data, which will further advance our understanding of BHs
and their environments. This review presents an overview of the exciting scientific
potential of future BH imaging studies, and is intended to be useful as a reference for
researchers interested in utilising the ngEHT as a distinct new tool for probing BHs
and studying fundamental physics.
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